This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Robust Feature Detection and Local Classification for Surfaces Based on Moment Analysis
September/October 2004 (vol. 10 no. 5)
pp. 516-524
The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. Here, a local classification method on surfaces is presented which avoids the evaluation of discretized curvature quantities. Moreover, it provides an indicator for smoothness of a given discrete surface and comes together with a built-in multiscale. The proposed classification tool is based on local zero and first moments on the discrete surface. The corresponding integral quantities are stable to compute and they give less noisy results compared to discrete curvature quantities. The stencil width for the integration of the moments turns out to be the scale parameter. Prospective surface processing applications are the segmentation on surfaces, surface comparison, and matching and surface modeling. Here, a method for feature preserving fairing of surfaces is discussed to underline the applicability of the presented approach.

[1] L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel,Axioms and Fundamental Equations of Image Processing Architectural Rational Mechanical Analysis, vol. 123, no. 3, pp. 199-257, 1993.
[2] V. Caselles, F. Catté, T. Coll, and F. Dibos, A Geometric Model for Active Contours in Image Processing Numerical Math., vol. 66, 1993.
[3] U. Clarenz, Enclosure Theorems for Extremals of Elliptic Parametric Functionals Calculus Variations, vol. 15, pp. 313-324, 2002.
[4] U. Clarenz, U. Diewald, and M. Rumpf, Anisotropic Diffusion in Surface Processing Proc. Visualization 2000, B. Hamann, T. Ertl, and A. Varshney, eds., pp. 397-405, 2000.
[5] U. Clarenz, G. Dziuk, and M. Rumpf, On Generalized Mean Curvature Flow Geometric Analysis and Nonlinear Partial Differential Equations, H. Karcher and S. Hildebrandt, eds., Springer, 2003.
[6] R. Deriche, Using Canny's Criteria to Derive a Recursively Implemented Optimal Edge Detector Int'l J. Computer Vision, vol. 1, pp. 167-187, 1987.
[7] M. Desbrun, M. Meyer, P. Schroeder, and A. Barr, Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow Computer Graphics (SIGGRAPH '99 Proc.), pp. 317-324, 1999.
[8] M. Desbrun, M. Meyer, P. Schroeder, and A. Barr, Anisotropic Feature Preserving Denoising of Height Fields and Bivariate Data Graphics Interface '00 Proc., 2000.
[9] U. Diewald, S. Morigi, and M. Rumpf, On Geometric Evolution and Cascadic Multigrid in Subdivision Proc. Vision, Modeling and Visualization 2001, T. Ertl, B. Girod, G. Greiner, H. Niemann, and H.-P. Seidel, eds., pp. 67-75, 2001.
[10] G. Dziuk, An Algorithm for Evolutionary Surfaces Numerical Math., vol. 58, pp. 603-611, 1991.
[11] C. Gotsman, S. Gumhold, and L. Kobbelt, Simplification and Compression of 3D Models Tutorials on Multiresolution in Geometric Modeling, Springer, 2002.
[12] J. Jost, Riemannian Geometry and Geometric Analysis. Springer, 1998.
[13] R. Kimmel, Intrinsic Scale Space for Images On Surfaces: The Geodesic Curvature Flow Graphical Models and Image Processing, vol. 59, no. 5, pp. 365-372, 1997.
[14] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, Interactive Multi-Resolution Modeling on Arbitrary Meshes Computer Graphics (SIGGRAPH '98 Proc.), pp. 105-114, 1998.
[15] F.F. Leymarie and B.B. Kimia, Computation of the Shock Scaffold for Unorganized Point Clouds in 3D IEEE Proc. Conf. Computer Vision and Pattern Recognition, vol. 1, pp. 821-827, 2003.
[16] M. Meyer, M. Desbrun, P. Schröder, and A.H. Barr, Discrete Differential-Geometry Operators for Triangulated 2-Manifolds Proc. VisMath Conf., 2002.
[17] H.P. Moreton and C.H. Séquin, Functional Optimization for Fair Surface Design SIGGRAPH '92 Conf. Proc., pp. 167-176, 1992.
[18] S.J. Osher and J.A. Sethian, Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations J. Computational Physics, vol. 79, pp. 12-49, 1988.
[19] P. Perona and J. Malik, Scale Space and Edge Detection Using Anisotropic Diffusion Proc. IEEE CS Workshop Computer Vision, 1987.
[20] U. Pinkall and K. Polthier, Computing Discrete Minimal Surfaces and Their Conjugates Experimental Math., vol. 2, no. 1, pp. 15-35, 1993.
[21] T. Preußler and M. Rumpf, A Level Set Method for Anisotropic Geometric Diffusion in 3D Image Processing SIAM J. Applied Math., vol. 62, no. 5, pp. 1772-1793, 2002.
[22] M. Rumpf and A. Telea, A Continuous Skeletonization Method Based on Level Sets Proc. VisSym '02, 2002.
[23] G. Taubin, A Signal Processing Approach to Fair Surface Design Computer Graphics (SIGGRAPH '95 Proc.), pp. 351-358, 1995.
[24] J. Weickert, Foundations and Applications of Nonlinear Anisotropic Diffusion Filtering Z. Angew. Math. Mech., vol. 76, pp. 283-286, 1996.
[25] J. Weickert, Anisotropic Diffusion in Image Processing. Teubner, 1998.
[26] J. Wu, S. Hu, C. Tai, and J. Sun, An Effective Feature-Preserving Mesh Simplification Scheme Based on Face Constriction Pacific Graphics 2001 Proc., pp. 12-21, 2001.

Index Terms:
Surface classification, surface processing, edge detection, nonsmooth geometry.
Citation:
Ulrich Clarenz, Martin Rumpf, Alexandru Telea, "Robust Feature Detection and Local Classification for Surfaces Based on Moment Analysis," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 5, pp. 516-524, Sept.-Oct. 2004, doi:10.1109/TVCG.2004.34
Usage of this product signifies your acceptance of the Terms of Use.