This Article 
 Bibliographic References 
 Add to: 
Visualizing a Sphere Eversion
September/October 2004 (vol. 10 no. 5)
pp. 509-515
The mathematical process of everting a sphere (turning it inside-out allowing self-intersections) is a grand challenge for visualization because of the complicated, ever-changing internal structure. We have computed an optimal minimax eversion, requiring the least bending energy. Here, we discuss techniques we used to help visualize this eversion for visitors to virtual environments and viewers of our video The Optiverse.

[1] J.R. Weeks, The Shape of Space, vol. 249 of Pure and Applied Math., second ed. Dekker, 2002.
[2] H. Whitney, On Regular Closed Curves in the Plane Compositio Math., vol. 4, pp. 276-284, 1937.
[3] S. Smale, A Classification of Immersions of the Two-Sphere Trans. Am. Math. Soc., vol. 90, pp. 281-290, 1959.
[4] N.L. Max, Turning a Sphere Inside Out, 1976, narrated film (21 min), reissued by AK Peters, 2004.
[5] N.L. Max and W. Clifford, Computer Animation of the Sphere Eversion Computer Graphics, Proc. SIGGRAPH '75, vol. 9, no. 1, pp. 32-39, 1975.
[6] J.M. Sullivan, Sphere Eversions: From Smale throughThe Optiverse Math. and Art: Math. Visualization in Art and Education, C.P. Bruter, ed., pp. 201-212, 311-313, Berlin: Springer, 2002.
[7] J.M. Sullivan, The Optiverseand Other Sphere Eversions Proc. Int'l Soc. Arts, Math., and Architecture (ISAMA '99), N.A. Friedman and J. Barrallo, eds., pp. 491-497, 1999, reprinted as [34].
[8] S. Levy, Making Waves: A Guide to the Ideas behind Outside In. Wellesley, Mass.: AK Peters, 1995.
[9] G. Francis, A Topological Picturebook. New York: Springer, 1987.
[10] J.M. Sullivan, G. Francis, and S. Levy, The Optiverse VideoMath Festival at ICM '98, H.-C. Hege and K. Polthier, eds., 1998. Narrated video (7 min),new.math.uiuc.eduoptiverse/.
[11] G. Francis, J.M. Sullivan, R.B. Kusner, K.A. Brakke, C. Hartman, and G. Chappell, The Minimax Sphere Eversion Visualization and Math., H.-C. Hege and K. Polthier, eds., pp. 3-20, Springer, 1997.
[12] G. Francis, J.M. Sullivan, and C. Hartman, Computing Sphere Eversions Math. Visualization, H.-C. Hege and K. Polthier, eds., pp. 237-255, Springer, 1998.
[13] K.A. Brakke, The Surface Evolver Experimental Math., vol. 1, no. 2, pp. 141-165, 1992.
[14] L. Hsu, R. Kusner, and J.M. Sullivan, Minimizing the Squared Mean Curvature Integral for Surfaces in Space Forms Experimental Math., vol. 1, no. 3, pp. 191-207, 1992.
[15] G. Francis and B. Morin, Arnold Shapiro's Eversion of the Sphere Math. Intelligencer, vol. 2, pp. 200-203, 1979.
[16] A. Phillips, Turning a Sphere Inside Out Scientific Am., vol. 214, pp. 112-120, 1966.
[17] N. Kuiper, Convex Immersions of Closed Surfaces in$E^3$ Commentarii Mathematici Helvetici, vol. 35, pp. 85-92, 1961.
[18] G. Francis, Drawing Surfaces and Their Deformations: The Tobacco Pouch Eversions of the Sphere Math. Modelling, vol. 1, pp. 273-281, 1980.
[19] B. Morin, Équations du retournement de la sph re Comptes Rendus Acad. Sci. Paris, vol. 287, pp. 879-882, 1978.
[20] F. Apéry, An Algebraic Halfway Model for the Eversion of the Sphere Tohoku Math. J., vol. 44, pp. 103-150, 1992, with an appendix by B. Morin.
[21] T.J. Willmore, Note on Embedded Surfaces An. Stiint. Univ., Al. I. Cuza Iasi Sect. I, a Mat., vol. 11, pp. 493-496, 1965.
[22] R. Bryant, A Duality Theorem for Willmore Surfaces J. Differential Geometry, vol. 20, pp. 23-53, 1984.
[23] R. Kusner, Conformal Geometry and Complete Minimal Surfaces Bulletin Am. Math. Soc., vol. 17, pp. 291-295, 1987.
[24] R. Kusner, Comparison Surfaces for the Willmore Problem Pacific J. Math., vol. 138, pp. 317-345, 1989.
[25] E. Kuwert and R. Schätzle, The Willmore Flow with Small Initial Energy J. Differential Geometry, vol. 57, no. 3, pp. 409-441, 2001.
[26] E. Kuwert and R. Schätzle, Gradient Flow for the Willmore Functional Comm. Analysis and Geometry, vol. 10, no. 2, pp. 307-339, 2002.
[27] J.M. Sullivan, The Aesthetic Value of Optimal Geometry The Visual Mind, II, M. Emmer, ed., Cambridge, Mass.: MIT Press, 2004.
[28] H. Karcher and U. Pinkall, Die Boysche Fläche in Oberwolfach Mitteilungen der DMV, vol. 1997, no. 1, pp. 45-47, 1997.
[29] G. Francis, S. Levy, and J.M. Sullivan, Making the Optiverse: A Mathematician's Guide to AVN, a Real-Time Interactive Computer Animator Math., Art, Technology, Cinema, M. Emmerand M. Manaresi, eds., Berlin: Springer, 2003. Italian translation in [35],
[30] J.M. Sullivan, Rescalable Real-Tme Interactive Computer Animations Multimedia Tools for Communicating Math., J. Borwein, M.H. Morales, K. Polthier, and J.F. Rodrigues, eds., pp. 311-314, Springer, 2002.
[31] G.K. Francis, C.M.A. Goudeseune, H.J. Kaczmarski, B.J. Schaeffer, and J.M. Sullivan, ALICE on the Eightfold Way: Exploring Curved Spaces in an Enclosed Virtual Reality Theater Visualization and Mathematics III, H.-C. Hege and K. Polthier, eds., pp. 305-315, 429, Berlin: Springer, 2003. .
[32] F.J. Almgren Jr. and J.M. Sullivan, Visualization of Soap Bubble Geometries Leonardo, vol. 24, nos. 3/4, pp. 267-271, 1992. Reprinted in The Visual Mind.
[33] S. Dickson, Tactile Mathematics Math. and Art: Math. Visualization in Art and Education, C.P. Bruter, ed., pp. 21-222, 314-315, Berlin: Springer, 2002.
[34] J.M. Sullivan, The Optiverseand Other Sphere Eversions Proc. Bridges Conf. 1999, R. Sarhangi, ed., pp. 265-274, 1999.
[35] G. Francis, S. Levy, and J.M. Sullivan, The Optiverse: Una Guida ai Matematici per AVN, Programma Interattivo di Animazione Matematica, Arte, Tecnologia, Cinema, M. Emmer and M. Manaresi, eds., pp. 37-51, Milano: Springer, 2002. Italian translation of [29].

Index Terms:
Visualization, sphere eversion, Boy surface, Morin surface, regular homotopy, immersions, Willmore energy, the CAVE.
George Francis, John M. Sullivan, "Visualizing a Sphere Eversion," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 5, pp. 509-515, Sept.-Oct. 2004, doi:10.1109/TVCG.2004.33
Usage of this product signifies your acceptance of the Terms of Use.