
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
John J. Bartholdi, Paul Goldsman, "Multiresolution Indexing of Triangulated Irregular Networks," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 4, pp. 484495, July/August, 2004.  
BibTex  x  
@article{ 10.1109/TVCG.2004.14, author = {John J. Bartholdi and Paul Goldsman}, title = {Multiresolution Indexing of Triangulated Irregular Networks}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {10}, number = {4}, issn = {10772626}, year = {2004}, pages = {484495}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2004.14}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Multiresolution Indexing of Triangulated Irregular Networks IS  4 SN  10772626 SP484 EP495 EPD  484495 A1  John J. Bartholdi, A1  Paul Goldsman, PY  2004 KW  Triangulated irregular network KW  TIN KW  spacefilling curve KW  hierarchical triangulation KW  multiresolution triangulation KW  triangle mesh KW  spatial index. VL  10 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract—We show how to build a continuous, onedimensional index of the points on a triangulated irregular network (TIN). The index is constructed by first finding an ordering of the triangles in which consecutive triangles share a vertex or an edge. Then, the space within each triangle is continuously indexed with a spacefilling curve that begins at one vertex of the triangle and ends at another. The spacefilling curve is oriented such that the first point in each triangle is a vertex shared with the previous triangle and the last point is a vertex shared with the next triangle. Furthermore, our index can be refined locally and, therefore, efficiently when the TIN is augmented by filling any face with another TIN (to make a hierarchical TIN). Such processes arise, for example, in the elaboration of detail on a graphical surface.
[1] M. Abdelguerfi, C. Wynne, E. Cooper, L. Roy, and K. Shaw, Representation of 3D Elevation in Terrain Databases Using Hierarchical Triangulated Irregular Networks: A Comparative Analysis Int'l J. Geographical Information Science, vol. 12, no. 8, pp. 853873, 1998.
[2] D.J. Abel and D.M. Mark, A Comparative Analysis of Some TwoDimensional Orderings Int'l J. Geographical Information Systems, vol. 4, no. 1, pp. 2131, 1990.
[3] E.M. Arkin, M. Held, J.S.B. Mitchell, and S.S. Skiena, Hamiltonian Triangulations for Fast Rendering Proc. Visualization '95, 1995.
[4] J.J. Bartholdi III and P. Goldsman, Continuous Indexing of Hierarchical Subdivisions of the Globe Int'l J. Geographical Information Science, vol. 15, no. 6, pp. 489522, 2001.
[5] J.J. Bartholdi III and P. Goldsman, VertexLabeling Algorithms for the Hilbert Spacefilling Curve Software Practice and Experience, vol. 31, pp. 395408, 2001.
[6] J.J. Bartholdi III and L.K. Platzman, An$O \left( n \log n \right)$Planar Travelling Salesman Heuristic Based on Spacefilling Curves Operations Research Letters, vol. 1, pp. 121125, 1982.
[7] J.J. Bartholdi III and L.K. Platzman, Heuristics Based on Spacefilling Curves for Combinatorial Problems in Euclidean Space Management Science, vol. 34, no. 3, pp. 291305, 1988.
[8] J.J. Bartholdi III, L.K. Platzman, R.L. Collins, and W.H. Warden, A Minimal Technology Routing System for MealsonWheels Interfaces, vol. 13, pp. 18, June 1983.
[9] A. Bogomjakov and C. Gotsman, Universal Rendering Sequences for Transparent Vertex Caching of Progressive Meshes Computer Graphics Forum, vol. 21, no. 2, pp. 137148, 2002.
[10] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. New York: Elsevier North Holland, Inc., 1979.
[11] L. De Floriani, P. Magillo, and E. Puppo, Compressing Triangulated Irregular Networks Geoinformatica, vol. 4, no. 2, pp. 6788, Mar. 2000.
[12] L. De Floriani and E. Puppo, Hierarchical Triangulation for Multiresolution Surface Description ACM Trans. Graphics, vol. 14, no. 4, pp. 363411, Oct. 1995.
[13] F. Evans, S. Skiena, and A. Varshney, Optimizing Triangle Strips for Fast Rendering Proc. IEEE Visualization '96, pp. 319326, 1996.
[14] M.F. Goodchild and A.W. Grandfield, Optimizing Raster Storage: An Examination of Four Alternatives Proc. Auto Carto 6, vol. 2, pp. 400407, 1983.
[15] C. Gotsman and M. Lindenbaum, On the Metric Properties of Discrete Spacefilling Curves Proc. Int'l Conf. Pattern Recognition, vol. 3, pp. 98102, 1994.
[16] C. Gotsman and M. Lindenbaum, On the Metric Properties of Discrete Spacefilling Curves IEEE Trans. Image Processing, vol. 5, no. 5, pp. 794797, May 1996.
[17] M. Isenburg, Triangle Strip Compression Proc. Graphics Interface 2000, pp. 197204, May 2000.
[18] Z. Karni, A. Bogomjakov, and C. Gotsman, Efficient Compression and Rendering of MultiResolution Meshes Proc. IEEE Visualization 2002, pp. 347354, 2002.
[19] R. Laurini and D. Thompson, Fundamentals of Spatial Information Systems. San Diego, Calif.: Academic Press, 1992.
[20] A.W.F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin, Maps: Multiresolution Adaptive Parameterizaton of Surfaces Proc. SIGGRAPH '98, pp. 95104, 1998.
[21] W.G. Nulty and J.J. Bartholdi III, Robust Spatial Searching with Spacefilling Curves Advances in GIS Research, Proc. Sixth Int'l Symp. Spatial Data Handling, T.C. Waugh and R.G. Healey, eds., Sept. 1994.
[22] L.K. Platzman and J.J. Bartholdi III, Spacefilling Curves and the Planar Travelling Salesman Problem J. ACM, vol. 36, no. 4, pp. 717737, Oct. 1989.
[23] J. Rossignac, Edgebreaker: Connectivity Compression for Triangle Meshes IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 1, pp. 4761, Jan.Mar. 1999.
[24] H. Sagan, SpaceFilling Curves. New York: SpringerVerlag, 1994.
[25] W. Sierpinski, Sur une Nouvelle Courbe Qui Remplit Toute une Aire Plaine Bull. Acad. Sci. Cracovie, Serie A, pp. 462478, 1912.
[26] G. Taubin and J. Rossignac, Geometric Compression through Topological Surgery ACM Trans. Graphics, vol. 17, no. 2, pp. 84115, Apr. 1998.
[27] C. Touma and C. Gotsman, Triangle Mesh Compression Proc. Graphics Interface 1998, pp. 2634, 1998,
[28] L. Velho, L.H. de Figueiredo, and J. Gomes, Hierarchical Generalized Triangle Strips The Visual Computer, vol. 15, no. 1, pp. 2135, 1999.