This Article 
 Bibliographic References 
 Add to: 
Reconstruction of Volume Data with Quadratic Super Splines
July/August 2004 (vol. 10 no. 4)
pp. 397-409

Abstract—We propose a new approach to reconstruct nondiscrete models from gridded volume samples. As a model, we use quadratic trivariate super splines on a uniform tetrahedral partition. We discuss the smoothness and approximation properties of our model and compare to alternative piecewise polynomial constructions. We observe, as a nonstandard phenomenon, that the derivatives of our splines yield optimal approximation order for smooth data, while the theoretical error of the values is nearly optimal due to the averaging rules. Our approach enables efficient reconstruction and visualization of the data. As the piecewise polynomials are of the lowest possible total degree two, we can efficiently determine exact ray intersections with an isosurface for ray-casting. Moreover, the optimal approximation properties of the derivatives allow us to simply sample the necessary gradients directly from the polynomial pieces of the splines. Our results confirm the efficiency of the quasi-interpolating method and demonstrate high visual quality for rendered isosurfaces.

[1] C. Rössl, F. Zeilfelder, G. Nürnberger, and H.-P. Seidel, Visualization of Volume Data with Quadratic Super Splines Proc. IEEE Visualization 2003, 2003.
[2] S.R. Marschner and R.J. Lobb, "An Evaluation of Reconstruction Filters for Volume Rendering," Proc. Visualization '94, pp. 100-107, IEEE CS Press, Oct. 1994.
[3] E. LaMar, B. Hamann, and K. Joy, High-Quality Rendering of Smooth Isosurfaces J. Visualization and Computer Animation, vol. 10, no. 2, pp. 79-90, 1999.
[4] D. Mitchell and A. Netravali, Reconstruction Filters in Computer Graphics Proc. SIGGRAPH '88, pp. 221-228, 1988.
[5] T. Möller, K. Mueller, Y. Kurzion, R. Machiraju, and R. Yagel, Design of Accurate and Smooth Filters for Function and Derivative Reconstruction Proc. Symp. Volume Visualization 1998, pp. 143-151, 1998.
[6] G.P. Bonneau, S. Hahmann, and G.M. Nielson, BLAC-Wavelets: A Multiresolution Analysis with Non-Nested Spaces Proc. Visualization '96, pp. 43-48, R. Yagel and G.M. Nielson, eds., 1996.
[7] H. Carr, T. Möller, and J. Snoeyink, Simplicial Subdivisions and Sampling Artifacts Proc. IEEE Visualization 2001, pp. 99-106, 2001.
[8] T. Gerstner and M. Rumpf, Multiresolutional Parallel Isosurface Extraction Based on Tetrahedral Bisection Volume Graphics, M. Chen, A. Kaufman, and R. Yagel, eds., Springer, pp. 267-278, 2000.
[9] R. Grosso, C. Luerig, and T. Ertl, The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume Data Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 387-394, 1997.
[10] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan, Interactive Ray Tracing for Isosurface Rendering Proc. IEEE Visualization Conf., pp. 233-238, Oct. 1998.
[11] L. Barthe, B. Mora, N. Dodgson, and M. Sabin, Triquadratic Reconstruction for Interactive Modelling of Potential Fields Proc. Shape Modeling Int'l 2002, pp. 145-153, 2002.
[12] B. Mora, J.-P. Jessel, and R. Caubet, Visualization of Isosurfaces with Parametric Cubes Proc. Eurographics 2001, pp. 377-384, 2001.
[13] P. Thévenaz and M. Unser, High-Quality Isosurface Rendering with Exact Gradients Proc. Int'l Conf. Image Processing (ICIP '01), pp. 854-857, 2001.
[14] W. Martin and E. Cohen, Representation and Extraction of Volumetric Attributes Using Trivariate Splines: A Mathematical Framework Proc. Solid Modelling and Applications 2001, pp. 234-240, 2001.
[15] D. Holliday and G. Nielson, Progressive Volume Models for Rectilinear Data Using Tetrahedral Coons Volumes Proc. Data Visualization 2000, pp. 83-92, 2000.
[16] C. Bajaj, Implicit Surface Patches Introduction to Implicit Surfaces, J. Bloomenthal, ed., pp. 99-125, Kaufmann, 1997.
[17] C. Bajaj, F. Bernardini, and G. Xu, Automatic Reconstruction of Surfaces and Scalar Fields from 3D Scans Proc. SIGGRAPH '95, pp. 109-118, 1995.
[18] W. Dahmen, Smooth Piecewise Quadric Surfaces Math. Methods in CAGD, T. Lyche and L. Schumaker, eds., pp. 181-194, Academic Press, 1989.
[19] W. Dahmen and T.-M. Thamm-Schaar, Cubicoids: Modeling and Visualization Computer Aided Geometric Design, vol. 10, no. 2, pp. 89-108, 1993.
[20] C. Bajaj, Data Visualization Techniques. John Wiley&Sons, 1999.
[21] M. Chen, A. Kaufman, and R. Yagel, Volume Graphics. Springer, 2000.
[22] K. Brodlie and J. Wood, Recent Advances in Volume Visualization Computer Graphics Forum, vol. 20, no. 2, pp. 125-148, 2001.
[23] A. Kaufman, State-of-the-Art in Volume Graphics Volume Graphics, M. Chen, A. Kaufman, and R. Yagel, eds., pp. 3-28, Springer, 2000.
[24] M. Meissner, J. Huang, D. Bartz, K. Mueller, and R. Crawfis, A Practical Comparison of Popular Volume Rendering Algorithms Proc. Symp. Volume Visualization and Graphics 2000, pp. 81-90, 2000.
[25] G. Nielson, Volume Modelling Volume Graphics, M. Chen, A. Kaufman, and R. Yagel, eds., pp. 29-50, Springer, 2000.
[26] T. Theußl, T. Möller, J. Hladuvka, and M. Gröller, Reconstruction Issues in Volume Visualization Data Visualization: The State of the Art, F. Post, B. Hamann, and G.-P. Bonneau, eds., pp. 109-126, 2003.
[27] T. Hangelbroek, G. Nürnberger, C. Rössl, H.-P. Seidel, and F. Zeilfelder, On the Dimension of$C^1$Splines of Arbitrary Degree on a Tetrahedral Partition J. Approximation Theory, to appear.
[28] G. Nürnberger and F. Zeilfelder, Developments in Bivariate Spline Interpolation J. Computational and Applied Math., vol. 121, pp. 125-152, 2000.
[29] F. Zeilfelder, Scattered Data Fitting with Bivariate Splines Tutorials on Multiresolution and Geometric Modelling, E.Q.A. Iske and M. Floater, ed., pp. 243-286, Springer, 2002.
[30] J. Hoschek and D. Lasser, Fundamentals of Computer Aided Geometric Design. A.K. Peters, 1993.
[31] J. Schwarze, Cubic and Quartic Roots Graphics Gems, A. Glassner, ed., pp. 404-407, Academic Press, 1990.
[32] C. Chui, Multivariate Splines. SIAM, 1988.
[33] O. Davydov and F. Zeilfelder, Scattered Data Fitting by Direct Extension of Local Polynomials with Bivariate Splines Advanced Computer Math., 2003.
[34] J. Haber, F. Zeilfelder, O. Davydov, and H.-P. Seidel, Smooth Approximation and Rendering of Large Scattered Data Sets Proc. IEEE Visualization 2001, pp. 341-347, 2001.
[35] C. de Boor, B-Form Basics Geometric Modelling, G. Farin, ed., SIAM, 1987.
[36] G. Farin, Triangular Bernstein-Bézier patches Computer-Aided Geometric Design, vol. 3, no. 2, pp. 83-127, 1986.
[37] H. Prautzsch, W. Boehm, and M. Paluszny, Bézier and B-Spline Techniques. Springer, 2002.
[38] N. Kohlmüller, G. Nürnberger, and F. Zeilfelder, Construction of Cubic 3D Spline Surfaces by Lagrange Interpolation at Selected Points Curve and Surface Fitting, pp. 245-254, 2003.
[39] N. Kohlmüller, G. Nürnberger, and F. Zeilfelder, Optimal Approximation Order of Interpolation by Cubic Spline Surfaces Curve and Surface Fitting, pp. 235-245, Nashville, Tenn.: Vanderbilt Univ. Press, 2003.
[40] M.-J. Lai and A.L. Méhauté, A New Kind of Trivariate$C^1$Spline Advanced Computer Math., 2003.
[41] G. Nürnberger, L. Schumaker, and F. Zeilfelder, Lagrange Interpolation by$C^1$Cubic Splines on Triangulated Quadrangulations Advanced Computer Math., 2003.
[42] L. Schumaker and T. Sorokina, Quintic Spline Interpolation on Type-4 Tetrahedral Partitions Advanced Computer Math., 2003.
[43] G. Nürnberger and F. Zeilfelder, Lagrange Interpolation by Bivariate$C^1$-Splines with Optimal Approximation Order Advanced Computer Math., 2003.
[44] G. Nürnberger, C. Rössl, H.-P. Seidel, and F. Zeilfelder, Quasi-Interpolation by Quadratic Piecewise Polynomials in Three Variables preprint,, 2003.
[45] G. Nürnberger, G. Steidl, and F. Zeilfelder, Explicit Estimates for Bivariate Hierarchical Bases Comm. Applications and Analysis, vol. 7, no. 1, pp. 133-151, 2003.
[46] P. de Casteljau, Courbes et SurfacesàPoles AndréCitroën, Automobiles SA, Paris, 1963.
[47] W. Lorensen and H. Cline, Marching Cubes: A High Resolution 3D Surface Construction Algorithm Proc. SIGGRAPH '87, vol. 21, no. 5, pp. 79-86, 1987.
[48] I. Wald and P. Slusallek, State of the Art in Interactive Ray Tracing Proc. STAR, EUROGRAPHICS 2001, pp. 21-42, 2001.
[49] G. Nürnberger, C. Rössl, H.-P. Seidel, and F. Zeilfelder, Approximation of Scattered Volume Data by Trivariate$C^1$-Splines in preparation, 2003.

Index Terms:
Spline and piecewise polynomial approximation, trivariate splines, volume visualization, ray-casting.
Christian R?ssl, Frank Zeilfelder, G?nther N?rnberger, Hans-Peter Seidel, "Reconstruction of Volume Data with Quadratic Super Splines," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 4, pp. 397-409, July-Aug. 2004, doi:10.1109/TVCG.2004.16
Usage of this product signifies your acceptance of the Terms of Use.