This Article 
 Bibliographic References 
 Add to: 
Counting Cases in Substitope Algorithms
July/August 2004 (vol. 10 no. 4)
pp. 371-384

Abstract—We describe how to count the cases that arise in a family of visualization techniques, including Marching Cubes, Sweeping Simplices, Contour Meshing, Interval Volumes, and Separating Surfaces. Counting the cases is the first step toward developing a generic visualization algorithm to produce substitopes (geometric substitutions of polytopes). We demonstrate the method using "GAP,” a software system for computational group theory. The case-counts are organized into a table that provides a taxonomy of members of the family; numbers in the table are derived from actual lists of cases, which are computed by our methods. The calculations confirm previously reported case-counts for four dimensions that are too large to check by hand and predict the number of cases that will arise in substitope algorithms that have not yet been invented. We show how Pólya theory produces a closed-form upper bound on the case counts.

[1] W.E. Lorensen and H.E. Cline, Marching Cubes: A High Resolution 3D Surface Construction Algorithm Proc. SIGGRAPH 1987, pp. 163-169, 1987.
[2] H.S.M. Coxeter, Regular Polytopes. Dover Publications, 1973.
[3] D.C. Banks and S. Linton, Counting Cases in Marching Cubes: Toward a Generic Algorithm for Producing Substitopes Proc. Visualization 2003, 2003.
[4] J. Bloomenthal, Polygonization of Implicit Surfaces Computer-Aided Geometric Design, vol. 5, pp. 341-355, 1988.
[5] H. Shen and C.R. Johnson, “Sweeping Simplices: A Fast Iso-Surface Extraction Algorithm for Unstructured Grids,” Proc. IEEE Visualization '95, pp. 143-150, 1995.
[6] S.F. Kirchberg, Marching Hypercubes ein Verfahren zur Konstruktion von Hyperflächen aus 4D-Rasterdaten Universität Dortmund, doplomarbeit am Lehrstuhl 7, 1993.
[7] J.C. Roberts and S. Hill, Piecewise Linear Hypersurfaces Using the Marching Cubes Algorithm Visual Data Exploration and Analysis VI, Proc. SPIE, R. Erbacher and A. Pang, eds., pp. 170-181, Jan. 1999.
[8] P. Bhaniramka, R. Wenger, and R. Crawfis, Isosurfacing in Higher Dimensions Proc. Visualization 2000, T. Ertl, B. Hamann, and A. Varshney, eds., pp. 267-273, 2000.
[9] G.M. Nielson and J. Sung, Interval Volume Tetrahedrization Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 221-228, Nov. 1997.
[10] C. Weigle and D.C. Banks, Complex-Valued Contour Meshing Proc. IEEE Visualization '96, R. Yagel and G.M. Nielson, eds., pp. 173-180, Oct. 1996.
[11] H.-C. Hege, M. Seebass, D. Stalling, and M. Zöckler, A Generalized Marching Cubes Algorithm Based on Non-Binary Classifications Technical Report SC 97-05, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Dec. 1997.
[12] D. Stalling, M. Zöckler, O. Sander, and H.-C. Hege, Weighted Labels for 3D Image Segmentation Technical Report SC 98-39, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Dec. 1998.
[13] Module: GMC, Template Graphics Software (User manual entry for amira visualization software), 2000.
[14] K. Montgomery, C. Bruyns, and S. Wildermuth, A Virtual Environment for Simulated Rat Dissection: A Case Study of Visualization for Astronaut Training Proc. IEEE Visualization 2001, pp. 509-512, 2001.
[15] H.-C. Hege, Enumeration of Symmetry Classes in Mesh Generation Report on Dagstuhl Seminar 9821: Hierarchical Methods in Computer Graphics, M. Gross, H. Müller, P. Schröder, and H.-P. Seidel, eds., pp. 9-10, May 1998.
[16] G.M. Nielson and R. Franke, Computing the Separating Surface for Segmented Data Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 229-234, Oct. 1997.
[17] H.-W. Shen, C.D. Hansen, Y. Livnat, and C.R. Johnson, Isosurfacing in Span Space with Utmost Efficiency (ISSUE) Proc. IEEE Visualization 1996, pp. 287-294, 1996.
[18] J. Wilhelms and A.V. Gelder, Octrees for Faster Isosurface Generation ACM Trans. Graphics, vol. 11, no. 3, pp. 201-227, July 1992.
[19] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno, “Speeding Up Isosurface Extraction Using Interval Trees,” IEEE Trans. Visualization and Computer Graphics, vol. 3, no. 2, pp. 158-170, Apr.-June 1997.
[20] R.S. Gallagher, “Span Filtering: An Optimization Scheme for Volume Visualization of Large Finite Element Models,” Proc. IEEE Visualization '91, pp. 68-74, 1991.
[21] A. Lindenmayer, Developmental Systems without Cellular Interaction, Their Languages and Grammars J. Theoretical Biology, vol. 30, pp. 455-484, 1971.
[22] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants, 1990.
[23] A. Glassner, A Tutorial on Geometric Replacements IEEE Computer Graphics and Applications, vol. 12, no. 1, pp. 22-36, Jan. 1992.
[24] M. Lounsbery, T.D. DeRose, and J. Warren, Multiresolution Analysis for Surfaces of Arbitrary Topological Type ACM Trans. Graphics, vol. 16, no. 1, pp. 34-73, 1997.
[25] L. Kobbelt, S. Campagna, and H.-P. Seidel, A General Framework for Mesh Decimation Proc. Graphics Interface, pp. 43-50, 1998.
[26] A. Cayley, On the Theory of Groups, as Depending on the Symbolic Equation$\theta^n=1$ Philosophical Magazine, vol. 7, pp. 40-47, 1854.
[27] J.G. Fraleigh, A First Course in Abstract Algebra, sixth ed. Addison-Wesley, 1998.
[28] P.M. Cohn, Algebra, volume 1, second ed. Wiley, 1984.
[29] Á. Seress, An Introduction to Computational Group Theory Notices of the AMS, vol. 44, no. 6, pp. 671-679, June/July 1997.
[30] M. Schönert, GAP Groups, Algorithms and Programming, Lehrstuhl D für Mathematik, RTWH, Aachen, 1994.
[31] W.S. Jevons, Solution of the Inverse or Inductive Problem, Involving Two Classes Proc. Manchester Literary and Philosophical Soc., vol. xi, pp. 65-68, Dec. 1871.
[32] W.S. Jevons, The Principles of Science: A Treatise on Logic and Scientific Method. 1874, second edition, reprinted with corrections, 1879, 1883, 1887, 1892, 1900, 1905, 1907, 1913.
[33] W.K. Clifford, Mathematical Papers, R. Tucker, ed. London: MacMillan and Co., 1882, introduction by H.J. Stephen Smith; reprinted by Chelsea, N.Y., 1968.
[34] G. Pólya, Sur les Types des Propositions Composées J. Symbolic Logic, vol. 5, no. 3, pp. 98-103, Sept. 1940.
[35] W. Burnside, Theory of Groups of Finite Order, second ed. London: Cambridge Univ. Press, 1911.
[36] G. Pólya, Kombinatorische Anzahlbesimmungen für Gruppen, Graphen und Chemische Verbindungen Acta Math., vol. 68, pp. 145-254, 1937.
[37] G. Pólya and R.C. Read, Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds. New York: Springer-Verlag, 1987.
[38] GAP Groups, Algorithms, and Programming, Version 4.3 The GAP Group, 2002, http:/
[39] W.K. Clifford, On the Types of Compound Statement Involving Four Classes Proc. Manchester Literary and Philosophical Soc., vol. xvi, pp. 88-101, Jan. 1877.

Index Terms:
Isosurface, level set, group action, orbit, geometric substitution, Marching Cubes, separating surface, Pólya counting, substitope.
David C. Banks, Stephen A. Linton, Paul K. Stockmeyer, "Counting Cases in Substitope Algorithms," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 4, pp. 371-384, July-Aug. 2004, doi:10.1109/TVCG.2004.6
Usage of this product signifies your acceptance of the Terms of Use.