This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Generalized B-Spline Subdivision-Surface Wavelets for Geometry Compression
May/June 2004 (vol. 10 no. 3)
pp. 326-338
Bernd Hamann, IEEE Computer Society
Kenneth I. Joy, IEEE Computer Society

Abstract—We present a new construction of lifted biorthogonal wavelets on surfaces of arbitrary two-manifold topology for compression and multiresolution representation. Our method combines three approaches: subdivision surfaces of arbitrary topology, B-spline wavelets, and the lifting scheme for biorthogonal wavelet construction. The simple building blocks of our wavelet transform are local lifting operations performed on polygonal meshes with subdivision hierarchy. Starting with a coarse, irregular polyhedral base mesh, our transform creates a subdivision hierarchy of meshes converging to a smooth limit surface. At every subdivision level, geometric detail can be expanded from wavelet coefficients and added to the surface. We present wavelet constructions for bilinear, bicubic, and biquintic B-Spline subdivision. While the bilinear and bicubic constructions perform well in numerical experiments, the biquintic construction turns out to be unstable. For lossless compression, our transform can be computed in integer arithmetic, mapping integer coordinates of control points to integer wavelet coefficients. Our approach provides a highly efficient and progressive representation for complex geometries of arbitrary topology.

[1] C. Bajaj, S. Schaefer, J. Warren, and G. Xu, A Subdivision Scheme for Hexahedral Meshes The Visual Computer, special issue on subdivision, vol. 18, pp. 343-356, 2002.
[2] M. Bertram, Multiresolution Modeling for Scientific Visualization dissertation, Univ. of California, Davis, 2000.
[3] M. Bertram, M. Duchaineau, B. Hamann, and K. Joy, Bicubic Subdivision-Surface Wavelets for Large-Scale Isosurface Representation and Visualization Proc. Visualization, pp. 389-396, 579, 2000.
[4] G.P. Bonneau, Optimal Triangular Haar Bases for Spherical Data Proc. Visualization, pp. 279-284, 534, 1999.
[5] G.-P. Bonneau, Multiresolution Analysis on Irregular Surface Meshes IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 4, Oct.-Dec. 1998.
[6] R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo, Wavelet Transforms that Map Integers to Integers Applied and Computational Harmonic Analysis, vol. 5, Academic Press, pp. 332-369, 1998.
[7] E. Catmull and J. Clark, Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes Computer-Aided Design, vol. 10, pp. 350-355, 1978.
[8] A. Cavaretta, C. Micchelli, and W. Dahmen, Stationary Subdivision. Boston: Am. Math. Soc., 1991.
[9] A. Certain, J. Popovic, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle, Interactive Multiresolution Surface Viewing. Proc. ACM SIGGRAPH, pp. 91-97, 1996.
[10] C. Chui, An Introduction to Wavelets. Academic Press, 1992.
[11] W. Dahmen, Decomposition of Refinable Spaces and Applications to Operator Equations Numerical Algorithms, vol. 5, pp. 229-245, 1993.
[12] I. Daubechies, Ten Lectures on Wavelets. SIAM, 1992.
[13] T. DeRose, M. Kass, and T. Truong, Subdivision Surfaces in Character Animation. Proc. ACM SIGGRAPH, pp. 85-94, 1998.
[14] D. Doo and M. Sabin, Behaviour of Recursive Division Surfaces Near Extraordinary Points Computer-Aided Design, vol. 10, pp. 356-360, 1978.
[15] M. Duchaineau, Dyadic Splines dissertation, Univ. of California, Davis, 1996.
[16] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, Multiresolution Analysis of Arbitrary Meshes Proc. ACM SIGGRAPH, pp. 173-182, 1995.
[17] M.S. Floater, K. Hormann, and M. Reimers, Parameterization of Manifold Triangulations Approximation Theory X: Abstract and Classical Analysis, pp. 197-209, Nashville, Tenn.: Vanderbilt Univ. Press, 2002.
[18] M.S. Floater, E.G. Quak, and M. Reimers, Filter Bank Algorithms for Piecewise Linear Prewavelets on Arbitrary Triangulations J. Computational and Applied Math., vol. 119, pp. 185-207, 2000.
[19] I. Guskov, A. Khodakovsky, P. Schröder, and W. Sweldens, Hybrid Meshes: Multiresolution Using Regular and Irregular Refinement Proc. Symp. Computational Geometry, pp. 264-272, 2002.
[20] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder, Normal Meshes Proc. ACM SIGGRAPH, pp. 95-102, 2000.
[21] I. Guskov, W. Sweldens, and P. Schröder, Multiresolution Signal Processing for Meshes Proc. ACM SIGGRAPH, pp. 325-334, 1999.
[22] A. Khodakovsky, P. Schröder, and W. Sweldens, Progressive Geometry Compression Proc. ACM SIGGRAPH, pp. 271-278, 2000.
[23] L. Kobbelt and P. Schröder, A Multiresolution Framework for Variational Subdivision ACM Trans. Graphics, vol. 17, no. 4, pp. 209-237, 1998.
[24] L. Kobbelt, J. Vorsatz, U. Labsik, and H.-P. Seidel, A Shrink Wrapping Approach to Remeshing Polygonal Surfaces Proc. Eurographics, pp. 119-129, 1999.
[25] L. Kobbelt, J. Vorsatz, and H.-P. Seidel, Multiresolution Hierarchies on Unstructured Triangle Meshes Computational Geometry: Theory and Applications, vol. 14, nos. 1-3, pp. 5-24, 1999.
[26] A. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin, Maps: Multiresolution Adaptive Parameterization of Surfaces Proc. ACM SIGGRAPH, pp. 95-104, 1998.
[27] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk, The Digital Michelangelo Project: 3D Scanning of Large Statues Proc. ACM SIGGRAPH, pp. 131-144, 2000.
[28] N. Litke, A. Levin, and P. Schröder, Fitting Subdivision Surfaces Proc. Visualization, pp. 319-324, 568, 2001.
[29] J. Lounsbery, Multiresolution Analysis for Surfaces of Arbitrary Topological Type dissertation, Univ. of Washington, Seattle, 1994.
[30] M. Lounsbery, T. DeRose, and J. Warren, Multiresolution Analysis for Surfaces of Arbitrary Topological Type ACM Trans. Graphics, vol. 16, no. 1, pp. 34-73, 1997.
[31] C.T. Loop, Smooth Subdivision Surfaces Based on Triangles MS thesis, Univ. of Utah, Salt Lake City, 1987.
[32] R. MacCracken and K.I. Joy, Free-Form Deformations with Lattices of Arbitrary Topology Proc. ACM SIGGRAPH, pp. 181-188, 1996.
[33] S.G. Mallat, A Wavelet Tour of Signal Processing. Academic Press, 1998.
[34] A. Moffat, R.M. Neal, and I.H. Witten, Arithmetic Coding Revisited ACM Trans. Information Systems, vol. 16, no. 3, pp. 256-294, 1998.
[35] G.M. Nielson, I.-H. Jung, and J. Sung, Haar Wavelets over Triangular Domains with Applications to Multiresolution Models for Flow over a Sphere Proc. Visualization '97, R. Yagel and H. Hagen, eds., pp. 143-149, 1997.
[36] J. Peters, Patching Catmull-Clark Meshes Proc. ACM SIGGRAPH, pp. 255-258, 2000.
[37] J. Peters and U. Reif, Analysis of Algorithms Generalizing B-Spline Subdivision J. Numerical Analysis, vol. 13, no. 2, pp. 728-748, 1998.
[38] P. Schröder and W. Sweldens, Spherical Wavelets: Efficiently Representing Functions on the Sphere Proc. ACM SIGGRAPH, pp. 161-172, 1995.
[39] J. Stam, On Subdivision Schemes Generalizing Uniform B-Spline Surfaces Computer-Aided Geometric Design, vol. 18, no. 5, pp. 383-396, 2001.
[40] J. Stam, Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values Proc. ACM SIGGRAPH, pp. 395-404, 1998.
[41] R. Stevenson, Piecewise Linear (Pre-)Wavelets on Non-Uniform Meshes Prof. Fifth European Multigrid Conf., pp. 306-319, 1998.
[42] E.J. Stollnitz, T.D. DeRose, and D.H. Salesin, Wavelets for Computer Graphics, Theory and Applications. Morgan Kaufmann, 1996.
[43] W. Sweldens, The Lfting Scheme: A Custom-Design Construction of Biorthogonal Wavelets Applied and Computational Harmonic Analysis, vol. 3, pp. 186-200, 1996.
[44] D. Zorin and P. Schröder, A Unified Framework for Primal/Dual Quadrilateral Subdivision Schemes. Computer-Aided Geometric Design, vol. 18, no. 5, pp. 429-454, 2001.

Index Terms:
Arbitrary-topology meshes, biorthogonal wavelets, geometry compression, multiresolution methods, subdivision surfaces.
Citation:
Martin Bertram, Mark A. Duchaineau, Bernd Hamann, Kenneth I. Joy, "Generalized B-Spline Subdivision-Surface Wavelets for Geometry Compression," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 3, pp. 326-338, May-June 2004, doi:10.1109/TVCG.2004.1272731
Usage of this product signifies your acceptance of the Terms of Use.