This Article 
 Bibliographic References 
 Add to: 
Topological Segmentation in Three-Dimensional Vector Fields
March/April 2004 (vol. 10 no. 2)
pp. 198-205
Bernd Hamann, IEEE Computer Society
Kenneth I. Joy, IEEE Computer Society

Abstract—We present a new method for topological segmentation in steady three-dimensional vector fields. Depending on desired properties, the algorithm replaces the original vector field by a derived segmented data set, which is utilized to produce separating surfaces in the vector field. We define the concept of a segmented data set, develop methods that produce the segmented data by sampling the vector field with streamlines, and describe algorithms that generate the separating surfaces. This method is applied to generate local separatrices in the field, defined by a movable boundary region placed in the field. The resulting partitions can be visualized using standard techniques for a visualization of a vector field at a higher level of abstraction.

[1] M.J. Berger and P. Colella, Local Adaptive Mesh Refinement for Shock Hydrodynamics J. Computational Physics, vol. 82, pp. 64-84, 1989.
[2] K. Bonnell, D. Schikore, M. Duchaineau, B. Hamann, and K.I. Joy, Constructing Material Interfaces from Data Sets with Volume-Fraction Information Proc. IEEE Visualization 2000, T. Ertl, B. Hamann, and A. Varshney, eds., pp. 367-372, Oct. 2000.
[3] R.L. Cook, Stochastic Sampling in Computer Graphics ACM Trans. Graphics, vol. 5, no. 1, pp. 51-72, Jan. 1986, also in Tutorial: Computer Graphics: Image Synthesis, pp. 283-304, Washington: CS Press, 1988.
[4] R.A. Crawfis and N. Max, "Texture Splats for 3D Scalar and Vector Field Visualization," Visualization 93, G.M. Nielson and D. Bergeron, eds., IEEE Computer Society Press, Los Alamitos, Calif., 1993, pp. 261-265.
[5] U. Dallmann, Topological Structures of Three-Dimensional Flow Separations Technical Report 221-82, Deutsche Forschungs-und Versuchsanstalt für Luft-and Raumfahrt, 1983.
[6] R. Franke and G.M. Nielson, Scattered Data Interpolation and Applications: A Tutorial and Survey Focus on Scientific Visualization, H. Hagen, H. Müller, and G.M. Nielson, eds., pp. 131-159, New York: Springer-Verlag, 1995.
[7] A.J. Hanson, Geometry for n-Dimensional Graphics Graphics Gems IV, P. Heckbert, ed., pp. 149-170, Boston: Academic Press, 1994.
[8] J. Helman and L. Hesselink, "Representation and Display of Vector Field Topology in Fluid Flow Data Sets," Computers, vol. 22, no. 8, pp. 27-36, Aug. 1989. Also appears in Visualization in Scientific Computing, G.M. Nielson and B. Shriver, eds. Companion video tape available from IEEE CS Press.
[9] J. Helman and L. Hesselink, Representation and Display of Vector Field Topology in Fluid Flow Data Sets Visualization in Scientific Computing, G.M. Nielson and B.D. Shriver, eds., pp. 61-73, IEEE CS Press, 1990.
[10] V. Interrante and C. Grosch, Visualizing 3D Flow IEEE Computer Graphics and Applications, vol. 18, no. 4, pp. 49-53, July-Aug. 1998.
[11] D.N. Kenwright, Automatic Detection of Open and Closed Separation and Attachment Lines Proc. IEEE Visualization 1998, pp. 151-158, 1998.
[12] D.N. Kenwright, C. Henze, and C. Levit, Feature Extraction of Separation and Attachment Lines IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 2, pp. 135-144, Apr.-June 1999.
[13] W.E. Lorensen and H.E. Cline, Marching Cubes: A High Resolution 3D Surface Construction Algorithm Computer Graphics (SIGGRAPH '87 Proc.), M.C. Stone, ed., vol. 21, no. 4, pp. 163-170, July 1987.
[14] H. Müller, Boundary Extraction for Rasterized Motion Planning Modeling and Planning for Sensor Based Intelligent Robot Systems, H. Bunke, T. Kanade, and H. Noltemeier, eds., pp. 41-50, World Scientific, 1995.
[15] G.M. Nielson, H. Hagen, and H. Müller, Scientific Visualization: Overviews, Methodologies, and Techniques. IEEE CS Press, 1997.
[16] G.M. Nielson and I.-H. Jung, Tools for Computing Tangent Curves for Linearly Varying Vector Fields over Tetrahedral Domains IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 4, pp. 360-372, Oct.-Dec. 1999
[17] G. Scheuermann, T. Bobach, H. Hagen, K. Mahrous, B. Hamann, and K.I. Joy, A Tetrahedra-Based Stream Surface Algorithm Proc. IEEE Visualization 2001, T. Ertl, K.I. Joy, and A. Varshney, eds., pp. 83-91, Oct. 2001.
[18] G. Scheuermann, H. Hagen, and H. Krüger, Clifford Algebra in Vector Field Visualization Math. Visualization, H.-C. Hege and K. Polthier, eds., pp. 343-351, Heidelberg: Springer Verlag, 1998.
[19] G. Scheuermann, B. Hamann, K.I. Joy, and W. Kollmann, Visualizing Local Vector Field Topology SPIE J. Electronic Imaging, vol. 9, no. 4, pp. 356-367, Oct. 2000.
[20] G. Scheuermann, X. Tricoche, and H. Hagen, C1-Interpolation for Vector Field Topology Visualization Proc. Visualization '99, pp. 271-278, Oct. 1999.
[21] X. Tricoche, G. Scheuermann, and H. Hagen, A Topology Simplification Method for 2D Vector Fields Proc. Visualization '00, pp. 359-366, Oct. 2000.
[22] J.J. van Wijk, “Implicit Stream Surfaces,” Proc. IEEE Visualization '93, pp. 245-252, 1993.
[23] R. Westermann, C. Johnson, and T. Ertl, Topology-Preserving Smoothing of Vector Fields IEEE Trans. Visualization and Computer Graphics, vol. 7, no. 3, pp. 222-229, July-Sept. 2001.
[24] R. Westermann, C. Johnson, and T. Ertl, A Level-Set Method for Flow Visualization Proc. IEEE Visualization 2000, T. Ertl, B. Hamann, and A. Varshney, eds., pp. 147-154, Oct. 2000.
[25] T. Wischgoll and G. Scheuermann, Detection and Visualization of Closed Streamlines in Planar Flows IEEE Trans. Visualizaton and Computer Graphics, vol. 7, no. 2, pp. 165-172, Apr.-June 2001.
[26] T. Wishgoll, G. Scheuermann, and H. Hagen, Distributed Computation of Planar-Closed Streamlines Proc. SPIE Visualization and Data Analysis 2002, R. Erbacher, P. Chen, M. Gröhn, J. Roberts, and C. Wittenbrink, eds., pp. 41-50, Jan. 2002.
[27] M. Zöckler, D. Stalling, and H.-C. Hege, Interactive Visualization of 3D-Vector Fields Using Illuminated Streamlines Proc. IEEE Visualization '96, pp. 107-113, 1996.

Index Terms:
Vector fields, flow fields, streamsurfaces, separatrices, segmentation.
Karim Mahrous, Janine Bennett, Gerik Scheuermann, Bernd Hamann, Kenneth I. Joy, "Topological Segmentation in Three-Dimensional Vector Fields," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 2, pp. 198-205, March-April 2004, doi:10.1109/TVCG.2004.1260771
Usage of this product signifies your acceptance of the Terms of Use.