
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Xiaoming Wei, Wei Li, Klaus Mueller, Arie E. Kaufman, "The LatticeBoltzmann Method for Simulating Gaseous Phenomena," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 2, pp. 164176, March/April, 2004.  
BibTex  x  
@article{ 10.1109/TVCG.2004.1260768, author = {Xiaoming Wei and Wei Li and Klaus Mueller and Arie E. Kaufman}, title = {The LatticeBoltzmann Method for Simulating Gaseous Phenomena}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {10}, number = {2}, issn = {10772626}, year = {2004}, pages = {164176}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2004.1260768}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  The LatticeBoltzmann Method for Simulating Gaseous Phenomena IS  2 SN  10772626 SP164 EP176 EPD  164176 A1  Xiaoming Wei, A1  Wei Li, A1  Klaus Mueller, A1  Arie E. Kaufman, PY  2004 KW  Lattice Boltzmann model KW  graphics hardware KW  GPU KW  textured splatting KW  gaseous phenomena modeling. VL  10 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract—We present a physicallybased, yet fast and simple method to simulate gaseous phenomena. In our approach, the incompressible NavierStokes (NS) equations governing fluid motion have been modeled in a novel way to achieve a realistic animation. We introduce the Lattice Boltzmann Model (LBM), which simulates the microscopic movement of fluid particles by linear and local rules on a grid of cells so that the macroscopic averaged properties obey the desired NS equations. The LBM is defined on a 2D or 3D discrete lattice, which is used to solve fluid animation based on different boundary conditions. The LBM simulation generates, in realtime, an accurate velocity field and can incorporate an optional temperature field to account for the buoyancy force of hot gas. Because of the linear and regular operations in each local cell of the LBM grid, we implement the computation in commodity texture hardware, further improving the simulation speed. Finally, textured splats are used to add small scale turbulent details, achieving highquality realtime rendering. Our method can also simulate the physically correct action of stationary or mobile obstacles on gaseous phenomena in realtime, while still maintaining highly plausible visual details.
[1] C. Cercignani, Mathematical Methods in Kinetic Theory. Plenum, 1990.
[2] J.X. Chen, N. Da, and V. Lobo, Toward InteractiveRate Simulation of Fluids with Moving Using NavierStokes Equations Graphical Models and Image Processing, vol. 57, no. 2, pp. 107116, Mar. 1995.
[3] S. Chen and G.D. Doolean, Lattice Boltzmann Method for Fluid Flows Ann. Rev. Fluid Mechanics, vol. 30, pp. 329364, 1998.
[4] N. Chiba, K. Muraoka, H. Takahashi, and M. Miura, TwoDimensional Visual Simulation of Flames, Smoke and the Spread of Fire J. Visualization and Computer Animation, vol. 5, pp. 3753, 1994.
[5] N. Chiba, S. Sanakanishi, K. Yokoyama, and I. Ootawara, Visual Simulation of Water Currents Using a ParticleBased Bahavioural Model J. Visualization and Computer Animation, vol. 6, pp. 155171, 1995.
[6] R.A. Crawfis and N. Max, "Texture Splats for 3D Scalar and Vector Field Visualization," Visualization 93, G.M. Nielson and D. Bergeron, eds., IEEE Computer Society Press, Los Alamitos, Calif., 1993, pp. 261265.
[7] M. Desbrun and M. Gascue, Smoothed Particles: A New Paradigm for Animating Highly Deformable Bodies Proc. Eurographics Workshop Animation and Simulation, pp. 6176, 1996.
[8] M. Desbrun and M.P. Gascue, Animating Soft Substances with Implicit Surfaces Proc. SIGGRAPH, pp. 287290, Aug. 1995.
[9] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita, A Simple, Efficient Method for Realistic Animation of Clouds Proc. SIGGRAPH, pp. 121128, Aug. 2000.
[10] G.D. Doolen, Lattice Gas Methods for Partial Differential Equations. AddisonWesley, 1990.
[11] D.S. Ebert and R.E. Parent, Rendering and Animation of Gaseous Phenomena by Combining Fast Volume and Scanline ABuffer Techniques Proc. SIGGRAPH, vol. 24, no. 4, pp. 357366, 1990.
[12] S.J. Farlow, Partial Differential Equations for Scientists and Engineers. New York: Dover Publications, 1982.
[13] R. Fedkiw, J. Stam, and H. Jensen, Visual Simulation of Smoke Proc. SIGGRAPH, pp. 129136, Aug. 2001.
[14] N. Foster and D. Metaxas, Modeling the Motion of a Hot, Turbulent Gas Proc. SIGGRAPH, pp. 181188, Aug. 1997.
[15] U. Frisch, B. Hasslacher, and Y. Pomeau, LatticeGas Automata for the NavierStokes Equations Physical Rev. Letters, vol. 56, no. 14, pp. 15051508, Apr. 1986.
[16] N. Gershenfeld, The Nature of Mathematical Modeling. Cambridge Univ. Press, 1999.
[17] J. Hardy, O. de Pazzis, and Y. Pomeau, Molecular Dynamics of a Classical Lattice Gas: Transport Properties and Time Correlation Functions Physics Rev. A, vol. 13, pp. 19491961, 1976.
[18] M. Harris, G. Coombe, T. Scheuermann, and A. Lastra, PhysicallyBased Visual Simulation on Graphics Hardware Proc. SIGGRAPH/Eurographics Workshop Graphics Hardware, pp. 110, Sept. 2002.
[19] B.D. Kandhai, Large Scale LatticeBoltzmann Simulations PhD thesis, Univ. of Amsterdam, Dec. 1999.
[20] S.A. King, R.A. Crawfis, and W. Reid, Fast Volume Rendering and Animation of Amorphous Phenomena Volume Graphics, pp. 229242, 2000.
[21] W. Li, X. Wei, and A. Kaufman, Implementing Lattice Boltzmann Computation on Graphics Hardware The Visual Computer, to appear.
[22] A. Luciani, A. Habibi, A. Vapillon, and Y. Duroc, A Physical Model of Turbulent Fluids Proc Eurographics Workshop Animation and Simulation, pp. 1629, 1995.
[23] R. Mei, L. Luo, and W. Shyy, An Accurate Curved Boundary Treatment in the Lattice Boltzman Method J. Computational Physics, vol. 155, pp. 307330, 1999.
[24] G. Miller and A. Pearce, Globular Dynamics: A Connected System for Animating Viscous Fluids Computers and Graphics, vol. 13, no. 3, pp. 305309, 1998.
[25] D. Muders, ThreeDimensional Parallel Lattice Boltzmann Hydrodynamics Simulations of Turbulent Flows in Interstellar Dark Clouds PhD thesis, Univ. of Bonn, Aug. 1995.
[26] K. Perlin, An Image Synthesizer Proc. SIGGRAPH, vol. 19, no. 3, pp. 287296, July 1985.
[27] K. Perlin and E.M. Hoffert, Hypertexture Proc. SIGGRAPH, vol. 20, no. 3, pp. 253262, July 1989.
[28] W.T. Reeves, Particle System A Technique for Modeling a Class of Fuzzy Objects Proc. SIGGRAPH, vol. 17, no. 3, pp. 359376, July 1983.
[29] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Haeberli, Fast Shadows and Lighting Effects Using Texture Mapping Proc. SIGGRAPH, pp. 249252, Aug. 1992.
[30] K. Sims, Particle Animation and Rendering Using Data Parallel Computation Proc. SIGGRAPH, vol. 24, no. 4, pp. 405413, Aug. 1990.
[31] J. Stam, Stable Fluids Proc. SIGGRAPH, pp. 121128, Aug. 1999.
[32] J. Stam and E. Fiume, Turbulent Wind Fields for Gaseous Phenomena Proc. SIGGRAPH, pp. 369376, Aug. 1993.
[33] D. Stora, P.O. Agliati, M.P. Cani, F. Neyret, and J.D. Gascuel, Animating Lava Flows Proc. Graphics Interface, pp. 203210, June 1999.
[34] D. Terzopoulos, J. Platt, and K. Fleischer, Heating and Melting Deformable Models (from Goop to Glop) Proc. Graphics Interface, pp. 219226, June 1989.
[35] D. Tonnesen, Modeling Liquids and Solids Using Thermal Particles Proc. Graphics Interface, pp. 255262, 1991.
[36] X. Wei, W. Li, and A. Kaufman, Melting and Flowing of Viscous Volumes Proc. Computer Animation and Social Agents, pp. 5459, May 2003.
[37] X. Wei, W. Li, K. Mueller, and A. Kaufman, Simulating Fire with Textured Splats Proc. IEEE Visualization, pp. 227234, Oct. 2002.
[38] J. Wejchert and D. Haumann, Animation Aerodynamics Proc. SIGGRAPH, vol. 25, no. 4, pp. 1922, July 1991.