
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Young J. Kim, Ming C. Lin, Dinesh Manocha, "Incremental Penetration Depth Estimation between Convex Polytopes Using DualSpace Expansion," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 2, pp. 152163, March/April, 2004.  
BibTex  x  
@article{ 10.1109/TVCG.2004.1260767, author = {Young J. Kim and Ming C. Lin and Dinesh Manocha}, title = {Incremental Penetration Depth Estimation between Convex Polytopes Using DualSpace Expansion}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {10}, number = {2}, issn = {10772626}, year = {2004}, pages = {152163}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2004.1260767}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Incremental Penetration Depth Estimation between Convex Polytopes Using DualSpace Expansion IS  2 SN  10772626 SP152 EP163 EPD  152163 A1  Young J. Kim, A1  Ming C. Lin, A1  Dinesh Manocha, PY  2004 KW  Penetration depth KW  Minkowski sums KW  Gauss map KW  incremental algorithm KW  haptic rendering. VL  10 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract—We present a fast algorithm to estimate the penetration depth between convex polytopes in 3D. The algorithm incrementally seeks a "locally optimal solution” by walking on the surface of the Minkowski sums. The surface of the Minkowski sums is computed
[1] S.A. Cameron and R.K. Culley, Determining the Minimum Translational Distance between Two Convex Polyhedra Proc. IEEE Int'l Conf. Robotics and Automation, pp. 591596, 1986.
[2] D. Hsu, L. Kavraki, J. Latombe, R. Motwani, and S. Sorkin, On Finding Narrow Passages with Probabilistic Roadmap Planners Proc. Third Workshop Algorithmic Foundations of Robotics, 1998.
[3] W. McNeely, K. Puterbaugh, and J. Troy, Six DegreeofFreedom Haptic Rendering Using Voxel Sampling Proc. ACM SIGGRAPH, pp. 401408, 1999.
[4] A. Gregory, A. Mascarenhas, S. Ehmann, M.C. Lin, and D. Manocha, 6DOF Haptic Display of Polygonal Models Proc. IEEE Visualization Conf., 2000.
[5] M. McKenna and D. Zeltzer, Dynamic Simulation of Autonomous Legged Locomotion Computer Graphics (SIGGRAPH '90 Proc.), F. Baskett, ed., vol. 24, pp. 2938, Aug. 1990.
[6] M. Moore and J. Wilhelms, Collision Detection and Response for Computer Animation Computer Graphics (SIGGRAPH '88 Proc.), J. Dill, ed., vol. 22, pp. 289298, Aug. 1988.
[7] S. Cameron, Enhancing GJK: Computing Minimum and Penetration Distance between Convex Polyhedra Proc. Int'l Conf. Robotics and Automation, pp. 31123117, 1997.
[8] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi, A Fast Procedure for Computing the Distance between Objects in ThreeDimensional Space J. Robotics and Automation, vol. 4, no. 2, pp. 193203, 1988.
[9] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri, Computing the IntersectionDepth of Polyhedra Algorithmica, vol. 9, pp. 518533, 1993.
[10] G. van Bergen, Proximity Queries and Penetration Depth Computation on 3D Game Objects Proc. Game Developers Conf., 2001.
[11] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha, Fast and Simple Geometric Proximity Queries Using Graphics Hardware Proc. ACM Symp. Interactive 3D Graphics, 2001.
[12] S. Fisher and M.C. Lin, Deformed Distance Fields for Simulation of NonPenetrating Flexible Bodies Proc. EG Workshop Computer Animation and Simulation, 2001.
[13] Y.J. Kim, M.C. Lin, and D. Manocha, DEEP: DualSpace Expansion for Estimating Penetration Depth between Convex Polytopes Proc. IEEE Conf. Robotics and Automation, 2002.
[14] M. Lin and S. Gottschalk, Collision Detection between Geometric Models: A Survey Proc. IMA Conf. Math. of Surfaces, 1998.
[15] R. Seidel, Linear Programming and Convex Hulls Made Easy Proc. Sixth Ann. ACM Conf. Computational Geometry, pp. 211215, 1990.
[16] M.C. Lin and J.F. Canny, "Efficient Algorithms for Incremental Distance Computation," Proc. IEEE Conf. Robotics and Automation, pp. 1,0081,014, 1991.
[17] B. Mirtich, VClip: Fast and Robust Polyhedral Collision Detection ACM Trans. Graphics, vol. 17, no. 3, pp. 177208, July 1998.
[18] S. Ehmann and M.C. Lin, Accelerated Proximity Queries between Convex Polyhedra Using MultiLevel Voronoi Marching Proc. IEEE/RSJ Int'l Conf. Intelligent Robots and Systems, 2000.
[19] L. Guibas, D. Hsu, and L. Zhang, HWalk: Hierarchical Distance Computation for Moving Convex Bodies Proc. ACM Symp. Computational Geometry, 1999.
[20] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, The r*Tree: An Efficient and Robust Access Method for Points and Rectangles Proc. SIGMOD Conf. Management of Data, pp. 322331, 1990.
[21] S. Gottschalk, M. Lin, and D. Manocha, OBBTree: A Hierarchical Structure for Rapid Interference Detection Proc. ACM Siggraph '96, pp. 171180, 1996.
[22] P.M. Hubbard, Collision Detection for Interactive Graphics Applications EEE Trans. Visualization and Computer Graphics, vol. 1, no. 3, pp. 218228, Sept. 1995.
[23] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan, Efficient Collision Detection Using Bounding Volume Hierarchies of kdops IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 1, pp. 2136, Jan.Mar. 1998.
[24] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, Fast Proximity Queries with Swept Sphere Volumes Technical Report TR99018, Dept. of Computer Science, Univ. of North Carolina, 1999.
[25] S. Ehmann and M.C. Lin, Accurate and Fast Proximity Queries between Polyhedra Using Convex Surface Decomposition Computer Graphics Forum (Proc. Eurographics 2001), vol. 20, no. 3, 2001.
[26] L.J. Guibas and R. Seidel, Computing Convolutions by Reciprocal Search Proc. Second Ann. ACM Symp. Computational Geometry, pp. 9099, 1986.
[27] P. Agarwal, L.J. Guibas, S. HarPeled, A. Rabinovitch, and M. Sharir, Penetration Depth of Two Convex Polytopes in 3D Nordic J. Computing, vol. 7, pp. 227240, 2000.
[28] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha, Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration Technical Report, UNCCS, 2002.
[29] E.G. Gilbert and C.J. Ong, "New Distances for the Separation and Penetration of Objects," Proc. Int'l Conf. Robotics and Automation, pp. 579586, 1994.
[30] M.E. Houle and G.T. Toussaint, Computing the Width of a Set IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 10, no. 5, pp. 761765, 1988.
[31] J. Schwerdt, M. Smid, J. Majhi, and R. Janardan, Computing the Width of a ThreeDimensional Point Set: An Experimental Study Report 18, Dept. of Computer Science, Univ. of Magdeburg, Germany, 1998.
[32] B. Chazelle, H. Edelsbrunner, L.J. Guibas, and M. Sharir, Diameter, Width, Closest Line Pair, and Parametric Searching Proc. Eighth Ann. ACM Symp. Computational Geometry, pp. 120129, 1992.
[33] P.K. Agarwal and M. Sharir, Efficient Randomized Algorithms for Some Geometric Optimization Problems Proc. 11th Ann. ACM Symp. Computational Geometry, pp. 326335, 1995.
[34] L.J. Guibas and J. Stolfi, Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams ACM Trans. Graphics, vol. 4, no. 2, pp. 74123, Apr. 1985.
[35] M. de Carmo, Differential Geometry of Curves and Surfaces. Englewood Cliffs, N.J.: Prentice Hall, 1976.
[36] J. O'Rourke, C.B. Chien, T. Olson, and D. Naddor, A New Linear Algorithm for Intersecting Convex Polygons Computer Graphics and Image Processing, vol. 19, pp. 384391, 1982.
[37] B. Grünbaum, Convex Polytopes. New York: John Wiley&Sons, 1967.
[38] Y.J. Kim, M. Otaduy, M.C. Lin, and D. Manocha, SixDegreeofFreedom Haptic Display Using Localized Contact Computations Proc. Symp. Haptic Interfaces for Virtual Environment and Teleoperator Systems, Mar. 2002.
[39] B. Chazelle, D. Dobkin, N. Shouraboura, and A. Tal, Strategies for Polyhedral Surface Decomposition: An Experimental Study Computational Geometry Theory and Applications, vol. 7, pp. 327342, 1997.
[40] Y. Kim, M. Otaduy, M. Lin, and D. Manocha, Fast Penetration Depth Computation for PhysicallyBased Animation Proc. ACM Symp. Computer Animation, 2002.