This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Incremental Penetration Depth Estimation between Convex Polytopes Using Dual-Space Expansion
March/April 2004 (vol. 10 no. 2)
pp. 152-163

Abstract—We present a fast algorithm to estimate the penetration depth between convex polytopes in 3D. The algorithm incrementally seeks a "locally optimal solution” by walking on the surface of the Minkowski sums. The surface of the Minkowski sums is computed implicitly by constructing a local dual mapping on the Gauss map. We also present three heuristic techniques that are used to estimate the initial features used by the walking algorithm. We have implemented the algorithm and compared its performance with earlier approaches. In our experiments, the algorithm is able to estimate the penetration depth in about a milli-second on an 1 GHz Pentium PC. Moreover, its performance is almost independent of model complexity in environments with high coherence between successive instances.

[1] S.A. Cameron and R.K. Culley, Determining the Minimum Translational Distance between Two Convex Polyhedra Proc. IEEE Int'l Conf. Robotics and Automation, pp. 591-596, 1986.
[2] D. Hsu, L. Kavraki, J. Latombe, R. Motwani, and S. Sorkin, On Finding Narrow Passages with Probabilistic Roadmap Planners Proc. Third Workshop Algorithmic Foundations of Robotics, 1998.
[3] W. McNeely, K. Puterbaugh, and J. Troy, Six Degree-of-Freedom Haptic Rendering Using Voxel Sampling Proc. ACM SIGGRAPH, pp. 401-408, 1999.
[4] A. Gregory, A. Mascarenhas, S. Ehmann, M.C. Lin, and D. Manocha, 6-DOF Haptic Display of Polygonal Models Proc. IEEE Visualization Conf., 2000.
[5] M. McKenna and D. Zeltzer, Dynamic Simulation of Autonomous Legged Locomotion Computer Graphics (SIGGRAPH '90 Proc.), F. Baskett, ed., vol. 24, pp. 29-38, Aug. 1990.
[6] M. Moore and J. Wilhelms, Collision Detection and Response for Computer Animation Computer Graphics (SIGGRAPH '88 Proc.), J. Dill, ed., vol. 22, pp. 289-298, Aug. 1988.
[7] S. Cameron, Enhancing GJK: Computing Minimum and Penetration Distance between Convex Polyhedra Proc. Int'l Conf. Robotics and Automation, pp. 3112-3117, 1997.
[8] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi, A Fast Procedure for Computing the Distance between Objects in Three-Dimensional Space J. Robotics and Automation, vol. 4, no. 2, pp. 193-203, 1988.
[9] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri, Computing the Intersection-Depth of Polyhedra Algorithmica, vol. 9, pp. 518-533, 1993.
[10] G. van Bergen, Proximity Queries and Penetration Depth Computation on 3D Game Objects Proc. Game Developers Conf., 2001.
[11] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha, Fast and Simple Geometric Proximity Queries Using Graphics Hardware Proc. ACM Symp. Interactive 3D Graphics, 2001.
[12] S. Fisher and M.C. Lin, Deformed Distance Fields for Simulation of Non-Penetrating Flexible Bodies Proc. EG Workshop Computer Animation and Simulation, 2001.
[13] Y.J. Kim, M.C. Lin, and D. Manocha, DEEP: Dual-Space Expansion for Estimating Penetration Depth between Convex Polytopes Proc. IEEE Conf. Robotics and Automation, 2002.
[14] M. Lin and S. Gottschalk, Collision Detection between Geometric Models: A Survey Proc. IMA Conf. Math. of Surfaces, 1998.
[15] R. Seidel, Linear Programming and Convex Hulls Made Easy Proc. Sixth Ann. ACM Conf. Computational Geometry, pp. 211-215, 1990.
[16] M.C. Lin and J.F. Canny, "Efficient Algorithms for Incremental Distance Computation," Proc. IEEE Conf. Robotics and Automation, pp. 1,008-1,014, 1991.
[17] B. Mirtich, V-Clip: Fast and Robust Polyhedral Collision Detection ACM Trans. Graphics, vol. 17, no. 3, pp. 177-208, July 1998.
[18] S. Ehmann and M.C. Lin, Accelerated Proximity Queries between Convex Polyhedra Using Multi-Level Voronoi Marching Proc. IEEE/RSJ Int'l Conf. Intelligent Robots and Systems, 2000.
[19] L. Guibas, D. Hsu, and L. Zhang, H-Walk: Hierarchical Distance Computation for Moving Convex Bodies Proc. ACM Symp. Computational Geometry, 1999.
[20] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, The r*-Tree: An Efficient and Robust Access Method for Points and Rectangles Proc. SIGMOD Conf. Management of Data, pp. 322-331, 1990.
[21] S. Gottschalk, M. Lin, and D. Manocha, OBB-Tree: A Hierarchical Structure for Rapid Interference Detection Proc. ACM Siggraph '96, pp. 171-180, 1996.
[22] P.M. Hubbard, Collision Detection for Interactive Graphics Applications EEE Trans. Visualization and Computer Graphics, vol. 1, no. 3, pp. 218-228, Sept. 1995.
[23] J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K. Zikan, Efficient Collision Detection Using Bounding Volume Hierarchies of k-dops IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 1, pp. 21-36, Jan.-Mar. 1998.
[24] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha, Fast Proximity Queries with Swept Sphere Volumes Technical Report TR99-018, Dept. of Computer Science, Univ. of North Carolina, 1999.
[25] S. Ehmann and M.C. Lin, Accurate and Fast Proximity Queries between Polyhedra Using Convex Surface Decomposition Computer Graphics Forum (Proc. Eurographics 2001), vol. 20, no. 3, 2001.
[26] L.J. Guibas and R. Seidel, Computing Convolutions by Reciprocal Search Proc. Second Ann. ACM Symp. Computational Geometry, pp. 90-99, 1986.
[27] P. Agarwal, L.J. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir, Penetration Depth of Two Convex Polytopes in 3D Nordic J. Computing, vol. 7, pp. 227-240, 2000.
[28] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha, Fast 3D Geometric Proximity Queries between Rigid and Deformable Models Using Graphics Hardware Acceleration Technical Report, UNC-CS, 2002.
[29] E.G. Gilbert and C.J. Ong, "New Distances for the Separation and Penetration of Objects," Proc. Int'l Conf. Robotics and Automation, pp. 579-586, 1994.
[30] M.E. Houle and G.T. Toussaint, Computing the Width of a Set IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 10, no. 5, pp. 761-765, 1988.
[31] J. Schwerdt, M. Smid, J. Majhi, and R. Janardan, Computing the Width of a Three-Dimensional Point Set: An Experimental Study Report 18, Dept. of Computer Science, Univ. of Magdeburg, Germany, 1998.
[32] B. Chazelle, H. Edelsbrunner, L.J. Guibas, and M. Sharir, Diameter, Width, Closest Line Pair, and Parametric Searching Proc. Eighth Ann. ACM Symp. Computational Geometry, pp. 120-129, 1992.
[33] P.K. Agarwal and M. Sharir, Efficient Randomized Algorithms for Some Geometric Optimization Problems Proc. 11th Ann. ACM Symp. Computational Geometry, pp. 326-335, 1995.
[34] L.J. Guibas and J. Stolfi, Primitives for the Manipulation of General Subdivisions and the Computation of Voronoi Diagrams ACM Trans. Graphics, vol. 4, no. 2, pp. 74-123, Apr. 1985.
[35] M. de Carmo, Differential Geometry of Curves and Surfaces. Englewood Cliffs, N.J.: Prentice Hall, 1976.
[36] J. O'Rourke, C.-B. Chien, T. Olson, and D. Naddor, A New Linear Algorithm for Intersecting Convex Polygons Computer Graphics and Image Processing, vol. 19, pp. 384-391, 1982.
[37] B. Grünbaum, Convex Polytopes. New York: John Wiley&Sons, 1967.
[38] Y.J. Kim, M. Otaduy, M.C. Lin, and D. Manocha, Six-Degree-of-Freedom Haptic Display Using Localized Contact Computations Proc. Symp. Haptic Interfaces for Virtual Environment and Teleoperator Systems, Mar. 2002.
[39] B. Chazelle, D. Dobkin, N. Shouraboura, and A. Tal, Strategies for Polyhedral Surface Decomposition: An Experimental Study Computational Geometry Theory and Applications, vol. 7, pp. 327-342, 1997.
[40] Y. Kim, M. Otaduy, M. Lin, and D. Manocha, Fast Penetration Depth Computation for Physically-Based Animation Proc. ACM Symp. Computer Animation, 2002.

Index Terms:
Penetration depth, Minkowski sums, Gauss map, incremental algorithm, haptic rendering.
Citation:
Young J. Kim, Ming C. Lin, Dinesh Manocha, "Incremental Penetration Depth Estimation between Convex Polytopes Using Dual-Space Expansion," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 2, pp. 152-163, March-April 2004, doi:10.1109/TVCG.2004.1260767
Usage of this product signifies your acceptance of the Terms of Use.