This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Mesh Simplification with Hierarchical Shape Analysis and Iterative Edge Contraction
March/April 2004 (vol. 10 no. 2)
pp. 142-151

Abstract—This paper presents a novel mesh simplification algorithm. It decouples the simplification process into two phases: shape analysis and edge contraction. In the analysis phase, it imposes a hierarchical structure on a surface mesh by uniform hierarchical partitioning, marks the importance of each vertex in the hierarchical structure, and determines the affected regions of each vertex at the hierarchical levels. In the contraction phase, it also divides the simplification procedure into two steps: half-edge contraction and optimization. In the first step, memoryless quadric metric error and the importance of vertices in the hierarchical structure are combined to determine one operation of half-edge contraction. In the second step, it repositions the vertices in the half-edge simplified mesh by minimizing the multilevel synthesized quadric error on the corresponding affected regions from the immediately local to the more global. The experiments illustrate the competitive results.

[1] D. Brodsky and B. Watson, Model Simplification through Refinement Proc. Graphics Interface 2000, pp. 221-228, May 2000.
[2] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno, Multiresolution Decimation Based on Global Error The Visual Computer, vol. 13, no. 5, pp. 228-246, 1997.
[3] P. Cignoni, C. Montani, and R. Scopigno, A Comparison of Mesh Simplification Algorithms Computers&Graphics, vol. 22, no. 1, pp. 37-54, 1998.
[4] P. Cignoni, C. Montani, and R. Scopigno, Metro: Measuring Error on Simplified Surfaces Computer Graphics Forum, vol. 17, no. 2, pp. 167-174, June 1998.
[5] J. Cohen, M. Olano, and D. Manocha, Simplifying Polygonal Models Using Successive Mappings Proc. Visualization '97, pp. 395-402, Oct. 1997.
[6] J. Cohen, M. Olano, and D. Manocha, Appearance-Preserving Simplification SIGGRAPH '98 Conf. Proc., pp. 115-122, 1998.
[7] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F. Brooks, and W. Wright, Simplification Envelopes SIGGRAPH '96 Conf. Proc., H. Rushmeier, ed., pp. 119-128, Aug. 1996.
[8] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, Multiresolution Analysis of Arbitrary Meshes SIGGRAPH '95 Conf. Proc., R. Cook, ed., pp. 173-182, Aug. 1995.
[9] M. Garland, Multiresolution Modeling: Survey&Future Opportunities Eurographics '99, State of the Art Report (STAR), 1999.
[10] M. Garland and P.S. Heckbert, Surface Simplification Using Quadric Error Metrics SIGGRAPH '97 Conf. Proc., T. Whitted, ed., pp. 209-216, Aug. 1997.
[11] M. Garland and P.S. Heckbert, Simplifying Surfaces with Color and Texture Using Quadric Error Metrics Proc. IEEE Visualization '98, pp. 263-269, 1998.
[12] M. Garland, A. Willmott, and P.S. Heckbert, Hierarchical Face Clustering on Polygonal Surfaces Proc. ACM Symp. Interactive 3D Graphics, Mar. 2001.
[13] T.S. Gieng, B. Hamann, K.I. Joy, G.L. Schussman, and I.J. Trotts, Constructing Hierarchies for Triangle Meshes IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 145-161, Apr.-June 1998.
[14] S. Gottschalk, M. Lin, and D. Manocha, OBB-Tree: A Hierarchical Structure for Rapid Interference Detection Proc. SIGGRAPH '96, pp. 171-180, 1996.
[15] A. Guéziec, Surface Simplification with Variable Tolerance Proc. Second Ann. Int'l Symp. Medical Robotics and Computer Assisted Surgery, pp. 132-139, Nov. 1995.
[16] A. Guéziec, Locally Toleranced Surface Simplification IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 2, pp. 168-189, Apr.-June 1999.
[17] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder, Normal Meshes SIGGRAPH '00 Conf. Proc., pp. 95-102, 2000.
[18] B. Hamman, A Data Reduction Scheme for Triangulated Surfaces Computer Aided Geometric Design, vol. 11, pp. 197-214, 1994.
[19] P. Hinker and C. Hansen, Geometric Optimization Proc. Visualization '93, pp. 189-195, 1993.
[20] H. Hoppe, Progressive Meshes SIGGRAPH '96 Conf. Proc., H. Rushmeier, ed., pp. 99-108, Aug. 1996.
[21] H. Hoppe, View-Dependent Refinement of Progressive Meshes SIGGRAPH '97 Conf. Proc., T. Whitted, ed., pp. 189-198, Aug. 1997.
[22] H. Hoppe, New Quadric Metric for Simplifying Meshes with Appearance Attributes Proc. IEEE Visualization '99, pp. 59-66, 1999.
[23] H. Hoppe, T. DeRose, T. Dunchamp, J. McDonald, and W. Stuetzle, Mesh Optimization SIGGRAPH '93 Conf. Proc., pp. 19-25, 1993.
[24] A. Kalvin and R. Taylor, Superfaces: Polygonal Mesh Simplification with Bounded Error IEEE Computer Graphics and Applications, vol. 16, pp. 64-77, May 1996.
[25] S. Kumar, D. Manocha, W. Garrett, and M. Lin, Hierarchical Back-Face Culling Computer and Graphics, vol. 23, no. 5, pp. 681-692, 1999.
[26] A. Lee, H. Moreton, and H. Hoppe, Displaced Subdivision Surfaces SIGGRAPH '00 Conf. Proc., pp. 85-94, 2000.
[27] P. Lindstrom and G. Turk, Evaluation of Memoryless Simplification IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 2, pp. 98-115, Apr.-June 1999.
[28] M. Lounsbery, T. DeRose, and J. Warren, Multiresolution Analysis for Surfaces of Arbitrary Topological Type ACM Trans. on Graphics, vol. 16, no. 1, pp. 34-73, 1997.
[29] K.L. Low and T.S. Tan, Model Simplification Using Vertex-Clustering Proc. ACM Symp. Interactive 3D Graphics, pp. 75-82, 1997.
[30] J. Maillot, H. Yahia, and A. Verroust, Interactive Texture Mapping SIGGRAPH '93 Conf. Proc., pp. 27-34, 1993.
[31] A.P. Mangan and R.T. Whitaker, Partitioning 3D Surface Meshes Using Watershed Segmentation IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 4, pp. 308-221, Oct.-Dec. 1999.
[32] J. Popovic and H. Hoppe, Progressive Simplicial Complexes SIGGRAPH '97 Conf. Proc., T. Whitted, ed., pp. 217-224, Aug. 1997.
[33] K.J. Renze and J.H. Oliver, Generalized Unstructured Decimation IEEE Computer Graphics and Applications, vol. 16, no. 6, pp. 24-32, Nov. 1996.
[34] R. Ronfard and J. Rossignac, Full-Range Approximation of Triangulated Polyhedra Proc. Eurographics '96, Computer Graphics Forum, vol. 15, no. 3, pp. 67-76, Aug. 1996.
[35] J. Rossignac and P. Borrel, Multi-Resolution 3D Approximations for Rendering Complex Scenes Modeling in Computer Graphics, B. Falcidieno and T. Kunii, eds., pp. 455-465, Springer-Verlag, 1993.
[36] P.V. Sander, J. Snyder, S.J. Gortler, and H. Hoppe, Texture Mapping Progressive Meshes SIGGRAPH '01 Conf. Proc., 2001.
[37] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, Decimation of Triangle Meshes Computer Graphics (SIGGRAPH '92 Proc.), E.E. Catmull, ed., vol. 26, pp. 65-70, July 1992.
[38] T.L. Yong and A.G. Requicha, Algorithms for Computing the Volume and Other Integral Properties of Solids. 1. Known Methods and Open Issues Comm. ACM, vol. 25, no. 9, pp. 635-641, Sept. 1982.

Index Terms:
Mesh simplification, object hierarchies, level of detail, shape approximation.
Citation:
Jingqi Yan, Pengfei Shi, David Zhang, "Mesh Simplification with Hierarchical Shape Analysis and Iterative Edge Contraction," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 2, pp. 142-151, March-April 2004, doi:10.1109/TVCG.2004.1260766
Usage of this product signifies your acceptance of the Terms of Use.