This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Selective Refinement Queries for Volume Visualization of Unstructured Tetrahedral Meshes
January-February 2004 (vol. 10 no. 1)
pp. 29-45

Abstract- In this paper, we address the problem of the efficient visualization of large irregular volume data sets by exploiting a multiresolution model based on tetrahedral meshes. Multiresolution models, also called Level-Of-Detail (LOD) models, allow encoding the whole data set at a virtually continuous range of different resolutions. We have identified a set of queries for extracting meshes at variable resolution from a multiresolution model, based on field values, domain location, or opacity of the transfer function. Such queries allow trading off between resolution and speed in visualization. We define a new compact data structure for encoding a multiresolution tetrahedral mesh built through edge collapses to support selective refinement efficiently and show that such a structure has a storage cost from 3 to 5.5 times lower than standard data structures used for tetrahedral meshes. The data structures and variable resolution queries have been implemented together with state-of-the art visualization techniques in a system for the interactive visualization of three-dimensional scalar fields defined on tetrahedral meshes. Experimental results show that selective refinement queries can support interactive visualization of large data sets.

[1] Y. Chiang and C.T. Silva, I/O Optimal Isosurface Extraction Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., 1997.
[2] Y. Chiang and C.T. Silva, Interactive Out-of-Core Isosurface Extraction Proc. IEEE Visualization '98, pp. 167-174, 1998.
[3] P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno, Simplification of Tetrahedral Volume with Accurate Error Evaluation Proc. IEEE Visualization 2000, pp. 85-92, 2000.
[4] P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno, Multiresolution Modeling and Rendering of Volume Data Based on Simplicial Complexes Proc. 1994 Symp. Volume Visualization, pp. 19-26, 1994.
[5] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, Multiresolution Modeling and Visualization of Volume Data IEEE Trans. Visualization and Computer Graphics, vol. 3, no. 4, pp. 352-369, Oct.-Dec. 1997.
[6] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno, External Memory Management and Simplification of Huge Meshes IEEE Trans. Visualization and Computer Graphics, to appear.
[7] J. Comba, J.T. Klosowski, N. Max, J.S.B. Mitchell, C.T. Silva, and P.L. Williams, Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids Computer Graphics Forum (Eurographics '99 Conf. Issue), vol. 18, no. 3, pp. C369-C376, 1999.
[8] L. De Floriani, P. Magillo, F. Morando, and E. Puppo, Dynamic View-Dependent Multiresolution on a Client-Server Architecture CAD J., vol. 32, no. 13, pp. 805-823, 2000.
[9] L. De Floriani, E. Puppo, and P. Magillo, A Formal Approach to Multiresolution Modeling Geometric Modeling: Theory and Practice, R. Klein, W. Straßer, and R. Rau, eds., Springer-Verlag, 1997.
[10] M. Deering, Geometry Compression Computer Graphics Proc., Ann. Conf. Series (SIGGRAPH '95), pp. 13-20, 1995.
[11] M.A. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Miller, C. Aldrich, and M.B. Mineev-Weinstein, “ROAMing Terrain: Real-Time Optimally Adapting Meshes,” Proc. IEEE Visualization '97, pp. 81-88, Nov. 1997.
[12] B. Hamann, E. LaMar, and K.I. Joy, High-Quality Rendering of Smooth Isosurfaces J. Visualization and Computer Animation, vol. 10, pp. 79-90, 1999.
[13] J. El-Sana and A. Varshney, Generalized View-Dependent Simplification Computer Graphics Forum, vol. 18, no. 3, pp. C83-C94, 1999.
[14] R. Farias, J.S. Mitchell, C.T. Silva, and B. Wylie, Time-Critical Rendering of Irregular Grids Proc. Sibgrapi 2000 (XIII Brazilian Symp. Computer Graphics and Image Processing), pp. 243-250, 2000.
[15] R. Farias and C.T. Sliva,"Out-Of-Core Rendering of Large, Unstructured Grids," IEEE Computer Graphics and Applications, vol. 21, no. 4, 2001, pp. 42-50.
[16] L. De Floriani and P. Magillo, Multiresolution Meshes Principles of Multiresolution in Geometric Modeling PRIMUS Summer School, Munich, Aug. 2001.
[17] M. Garland, Multiresolution Modeling: Survey&Future Opportunities Eurographics '99 State of the Art Reports, pp. 111-131, 1999.
[18] T. Gerstner and R. Pajarola, Topology Preserving and Controlled Topology Simplifying Multiresolution Isosurface Extraction Proc. IEEE Visualization 2000, pp. 259-266, 2000.
[19] M.H. Gross and O.G. Staadt, Progressive Tetrahedralizations Proc. IEEE Visualization '98, pp. 397-402, 1998.
[20] R. Grosso, C. Luerig, and T. Ertl, The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume Data Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 387-394, 1997.
[21] A. Guéziec, G. Taubin, F. Lazarus, and W. Horn, Simplicial Maps for Progressive Transmission of Polygonal Surfaces Proc. ACM Int'l Conf. Virtual Reality and Modeling Language (VRML '98), pp. 25-31, 1998.
[22] I. Ihm and S. Park, Wavelet-Based 3D Compression Scheme for Very Large Volume Data Proc. Graphics Interface, pp. 107-116, 1998.
[23] T-Y. Kim and Y.G. Shin, "An Efficient Wavelet-Based Compression Method for Volume Rendering," Proc. Seventh Pacific Conf. Computer Graphics and Applications, IEEE Press, 1999, pp. 47-57.
[24] M. Lee, L. De Floriani, and H. Samet, Constant-Time Neighbor Finding in Hierarchical Meshes Proc. Int'l Conf. Shape Modeling, 2001.
[25] P. Lindstrom, Out-of-Core Simplification of Large Polygonal Models Computer Graphics Proc., Ann. Conf. Series (SIGGRAPH 2000), pp. 259-262, 2000.
[26] D. Luebke and C. Erikson, View-Dependent Simplification of Arbitrary Polygonal Environments ACM Computer Graphics Proc., Ann. Conf. Series (SIGGRAPH '97), pp. 199-207, 1997.
[27] S. Muraki,“Volume data and wavelet transforms,” IEEE CG&A, vol. 13, no. 4, pp. 50-56, 1993.
[28] M. Ohlberger and M. Rumpf, Adaptive Projection Operators in Multiresolution Scientific Visualization IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 1, pp. 74-93, Jan.-Mar. 1999.
[29] V. Pascucci and C.L. Bajaj, Time Critical Isosurface Refinement and Smoothing Proc. 2000 IEEE Symp. Volume Visualization, pp. 33-42, 2000.
[30] K. Perlin and E.M. Hoffert, Hypertexture Computer Graphics (SIGGRAPH '89 Proc.), vol. 23, no. 3, pp. 253-262, 1989.
[31] J. Popovic and H. Hoppe, Progressive Simplicial Complexes ACM Computer Graphics Proc., Ann. Conf. Series (SIGGRAPH '97), pp. 217-224, 1997.
[32] R. Shekhar, E. Fayad, R. Yagel, and F. Cornhill, Octree-Based Decimation of Marching Cubes Surfaces Proc. Visualization Conf., pp. 335-342, Sept. 1996.
[33] P. Shirley and A. Tuchman, A Polygonal Approximation to Direct Scalar Volume Rendering Computer Graphics (San Diego Workshop Volume Visualization), vol. 24, no. 5, pp. 63-70, 1990.
[34] D.E. Sigeti, B.F. Gregorski, J. Ambrosiano, G. Graham, M.A. Duchaineau, B. Haman, and K.I. Joy, Approximating Material Interfaces in Two- and Three-Dimensional Meshes during Data Simplification Proc. NSF/DoE Lake Tahoe Workshop Hierarchical Approximation and Geometrical Methods for Scientific Visualization, 2000.
[35] I.J. Trotts, B. Hamann, and K.I. Joy, Simplification of Tetrahedral Meshes with Error Bounds IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 3, pp. 224-237, 1999.
[36] R. Westermann, L. Kobbelt, and T. Ertl, Real-Time Exploration of Regular Volume Data by Adaptive Reconstruction of Isosurfaces The Visual Computer, pp. 100-111, 1999.
[37] J. Wilhelms and A. van Gelder, Multi-Dimensional Trees for Controlled Volume Rendering and Compression Proc. 1994 Symp. Volume Visualization, pp. 27-34, 1994.
[38] P. Williams, N. Max, and C. Stein, “A High Accuracy Volume Renderer for Unstructured Data,” IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 1, pp. 37-54, Jan.-Mar. 1998.
[39] J.C. Xia, J. El-Sana, and A. Varshney, “Adaptive Real-Time Level-of-Detail-Based Rendering for Polygonal Models,” IEEE Trans. Visualization and Computer Graphics, 3, no. 2, pp. 171-183, Apr.-June 1997.
[40] C. Yang, T. Mitra, and T. Chiueh, On-the-Fly Rendering of Losslessly Compressed Irregular Volume Data Proc. IEEE Visualization 2000, T. Ertl, B. Hamann, and A. Varshney, eds., pp. 101-108, 2000.
[41] Y. Zhou, B. Chen, and A. Kaufman, Multiresolution Tetrahedral Framework for Visualizing Regular Volume Data Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 135-142, 1997.

Index Terms:
Unstructured tetrahedral meshes, volume data visualization, multiresolution geometric modeling, selective refinement.
Citation:
Paolo Cignoni, Leila De Floriani, Paola Magillo, Enrico Puppo, Roberto Scopigno, "Selective Refinement Queries for Volume Visualization of Unstructured Tetrahedral Meshes," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 1, pp. 29-45, Jan.-Feb. 2004, doi:10.1109/TVCG.2004.1260756
Usage of this product signifies your acceptance of the Terms of Use.