
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Paolo Cignoni, Leila De Floriani, Paola Magillo, Enrico Puppo, Roberto Scopigno, "Selective Refinement Queries for Volume Visualization of Unstructured Tetrahedral Meshes," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 1, pp. 2945, JanuaryFebruary, 2004.  
BibTex  x  
@article{ 10.1109/TVCG.2004.1260756, author = {Paolo Cignoni and Leila De Floriani and Paola Magillo and Enrico Puppo and Roberto Scopigno}, title = {Selective Refinement Queries for Volume Visualization of Unstructured Tetrahedral Meshes}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {10}, number = {1}, issn = {10772626}, year = {2004}, pages = {2945}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2004.1260756}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Selective Refinement Queries for Volume Visualization of Unstructured Tetrahedral Meshes IS  1 SN  10772626 SP29 EP45 EPD  2945 A1  Paolo Cignoni, A1  Leila De Floriani, A1  Paola Magillo, A1  Enrico Puppo, A1  Roberto Scopigno, PY  2004 KW  Unstructured tetrahedral meshes KW  volume data visualization KW  multiresolution geometric modeling KW  selective refinement. VL  10 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract In this paper, we address the problem of the efficient visualization of large irregular volume data sets by exploiting a multiresolution model based on tetrahedral meshes. Multiresolution models, also called LevelOfDetail (LOD) models, allow encoding the whole data set at a virtually continuous range of different resolutions. We have identified a set of queries for extracting meshes at variable resolution from a multiresolution model, based on field values, domain location, or opacity of the transfer function. Such queries allow trading off between resolution and speed in visualization. We define a new compact data structure for encoding a multiresolution tetrahedral mesh built through edge collapses to support selective refinement efficiently and show that such a structure has a storage cost from 3 to 5.5 times lower than standard data structures used for tetrahedral meshes. The data structures and variable resolution queries have been implemented together with stateofthe art visualization techniques in a system for the interactive visualization of threedimensional scalar fields defined on tetrahedral meshes. Experimental results show that selective refinement queries can support interactive visualization of large data sets.
[1] Y. Chiang and C.T. Silva, I/O Optimal Isosurface Extraction Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., 1997.
[2] Y. Chiang and C.T. Silva, Interactive OutofCore Isosurface Extraction Proc. IEEE Visualization '98, pp. 167174, 1998.
[3] P. Cignoni, D. Costanza, C. Montani, C. Rocchini, and R. Scopigno, Simplification of Tetrahedral Volume with Accurate Error Evaluation Proc. IEEE Visualization 2000, pp. 8592, 2000.
[4] P. Cignoni, L. De Floriani, C. Montani, E. Puppo, and R. Scopigno, Multiresolution Modeling and Rendering of Volume Data Based on Simplicial Complexes Proc. 1994 Symp. Volume Visualization, pp. 1926, 1994.
[5] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno, Multiresolution Modeling and Visualization of Volume Data IEEE Trans. Visualization and Computer Graphics, vol. 3, no. 4, pp. 352369, Oct.Dec. 1997.
[6] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno, External Memory Management and Simplification of Huge Meshes IEEE Trans. Visualization and Computer Graphics, to appear.
[7] J. Comba, J.T. Klosowski, N. Max, J.S.B. Mitchell, C.T. Silva, and P.L. Williams, Fast Polyhedral Cell Sorting for Interactive Rendering of Unstructured Grids Computer Graphics Forum (Eurographics '99 Conf. Issue), vol. 18, no. 3, pp. C369C376, 1999.
[8] L. De Floriani, P. Magillo, F. Morando, and E. Puppo, Dynamic ViewDependent Multiresolution on a ClientServer Architecture CAD J., vol. 32, no. 13, pp. 805823, 2000.
[9] L. De Floriani, E. Puppo, and P. Magillo, A Formal Approach to Multiresolution Modeling Geometric Modeling: Theory and Practice, R. Klein, W. Straßer, and R. Rau, eds., SpringerVerlag, 1997.
[10] M. Deering, Geometry Compression Computer Graphics Proc., Ann. Conf. Series (SIGGRAPH '95), pp. 1320, 1995.
[11] M.A. Duchaineau, M. Wolinsky, D.E. Sigeti, M.C. Miller, C. Aldrich, and M.B. MineevWeinstein, “ROAMing Terrain: RealTime Optimally Adapting Meshes,” Proc. IEEE Visualization '97, pp. 8188, Nov. 1997.
[12] B. Hamann, E. LaMar, and K.I. Joy, HighQuality Rendering of Smooth Isosurfaces J. Visualization and Computer Animation, vol. 10, pp. 7990, 1999.
[13] J. ElSana and A. Varshney, Generalized ViewDependent Simplification Computer Graphics Forum, vol. 18, no. 3, pp. C83C94, 1999.
[14] R. Farias, J.S. Mitchell, C.T. Silva, and B. Wylie, TimeCritical Rendering of Irregular Grids Proc. Sibgrapi 2000 (XIII Brazilian Symp. Computer Graphics and Image Processing), pp. 243250, 2000.
[15] R. Farias and C.T. Sliva,"OutOfCore Rendering of Large, Unstructured Grids," IEEE Computer Graphics and Applications, vol. 21, no. 4, 2001, pp. 4250.
[16] L. De Floriani and P. Magillo, Multiresolution Meshes Principles of Multiresolution in Geometric Modeling PRIMUS Summer School, Munich, Aug. 2001.
[17] M. Garland, Multiresolution Modeling: Survey&Future Opportunities Eurographics '99 State of the Art Reports, pp. 111131, 1999.
[18] T. Gerstner and R. Pajarola, Topology Preserving and Controlled Topology Simplifying Multiresolution Isosurface Extraction Proc. IEEE Visualization 2000, pp. 259266, 2000.
[19] M.H. Gross and O.G. Staadt, Progressive Tetrahedralizations Proc. IEEE Visualization '98, pp. 397402, 1998.
[20] R. Grosso, C. Luerig, and T. Ertl, The Multilevel Finite Element Method for Adaptive Mesh Optimization and Visualization of Volume Data Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 387394, 1997.
[21] A. Guéziec, G. Taubin, F. Lazarus, and W. Horn, Simplicial Maps for Progressive Transmission of Polygonal Surfaces Proc. ACM Int'l Conf. Virtual Reality and Modeling Language (VRML '98), pp. 2531, 1998.
[22] I. Ihm and S. Park, WaveletBased 3D Compression Scheme for Very Large Volume Data Proc. Graphics Interface, pp. 107116, 1998.
[23] TY. Kim and Y.G. Shin, "An Efficient WaveletBased Compression Method for Volume Rendering," Proc. Seventh Pacific Conf. Computer Graphics and Applications, IEEE Press, 1999, pp. 4757.
[24] M. Lee, L. De Floriani, and H. Samet, ConstantTime Neighbor Finding in Hierarchical Meshes Proc. Int'l Conf. Shape Modeling, 2001.
[25] P. Lindstrom, OutofCore Simplification of Large Polygonal Models Computer Graphics Proc., Ann. Conf. Series (SIGGRAPH 2000), pp. 259262, 2000.
[26] D. Luebke and C. Erikson, ViewDependent Simplification of Arbitrary Polygonal Environments ACM Computer Graphics Proc., Ann. Conf. Series (SIGGRAPH '97), pp. 199207, 1997.
[27] S. Muraki,“Volume data and wavelet transforms,” IEEE CG&A, vol. 13, no. 4, pp. 5056, 1993.
[28] M. Ohlberger and M. Rumpf, Adaptive Projection Operators in Multiresolution Scientific Visualization IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 1, pp. 7493, Jan.Mar. 1999.
[29] V. Pascucci and C.L. Bajaj, Time Critical Isosurface Refinement and Smoothing Proc. 2000 IEEE Symp. Volume Visualization, pp. 3342, 2000.
[30] K. Perlin and E.M. Hoffert, Hypertexture Computer Graphics (SIGGRAPH '89 Proc.), vol. 23, no. 3, pp. 253262, 1989.
[31] J. Popovic and H. Hoppe, Progressive Simplicial Complexes ACM Computer Graphics Proc., Ann. Conf. Series (SIGGRAPH '97), pp. 217224, 1997.
[32] R. Shekhar, E. Fayad, R. Yagel, and F. Cornhill, OctreeBased Decimation of Marching Cubes Surfaces Proc. Visualization Conf., pp. 335342, Sept. 1996.
[33] P. Shirley and A. Tuchman, A Polygonal Approximation to Direct Scalar Volume Rendering Computer Graphics (San Diego Workshop Volume Visualization), vol. 24, no. 5, pp. 6370, 1990.
[34] D.E. Sigeti, B.F. Gregorski, J. Ambrosiano, G. Graham, M.A. Duchaineau, B. Haman, and K.I. Joy, Approximating Material Interfaces in Two and ThreeDimensional Meshes during Data Simplification Proc. NSF/DoE Lake Tahoe Workshop Hierarchical Approximation and Geometrical Methods for Scientific Visualization, 2000.
[35] I.J. Trotts, B. Hamann, and K.I. Joy, Simplification of Tetrahedral Meshes with Error Bounds IEEE Trans. Visualization and Computer Graphics, vol. 5, no. 3, pp. 224237, 1999.
[36] R. Westermann, L. Kobbelt, and T. Ertl, RealTime Exploration of Regular Volume Data by Adaptive Reconstruction of Isosurfaces The Visual Computer, pp. 100111, 1999.
[37] J. Wilhelms and A. van Gelder, MultiDimensional Trees for Controlled Volume Rendering and Compression Proc. 1994 Symp. Volume Visualization, pp. 2734, 1994.
[38] P. Williams, N. Max, and C. Stein, “A High Accuracy Volume Renderer for Unstructured Data,” IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 1, pp. 3754, Jan.Mar. 1998.
[39] J.C. Xia, J. ElSana, and A. Varshney, “Adaptive RealTime LevelofDetailBased Rendering for Polygonal Models,” IEEE Trans. Visualization and Computer Graphics, 3, no. 2, pp. 171183, Apr.June 1997.
[40] C. Yang, T. Mitra, and T. Chiueh, OntheFly Rendering of Losslessly Compressed Irregular Volume Data Proc. IEEE Visualization 2000, T. Ertl, B. Hamann, and A. Varshney, eds., pp. 101108, 2000.
[41] Y. Zhou, B. Chen, and A. Kaufman, Multiresolution Tetrahedral Framework for Visualizing Regular Volume Data Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 135142, 1997.