This Article 
 Bibliographic References 
 Add to: 
Interactive Stereoscopic Rendering of Volumetric Environments
January-February 2004 (vol. 10 no. 1)
pp. 15-28

Abstract—We present an efficient stereoscopic rendering algorithm supporting interactive navigation through large-scale 3D voxel-based environments. In this algorithm, most of the pixel values of the right image are derived from the left image by a fast 3D warping based on a specific stereoscopic projection geometry. An accelerated volumetric ray casting then fills the remaining gaps in the warped right image. Our algorithm has been parallelized on a multiprocessor by employing effective task partitioning schemes and achieved a high cache coherency and load balancing. We also extend our stereoscopic rendering to include view-dependent shading and transparency effects. We have applied our algorithm in two virtual navigation systems, flythrough over terrain and virtual colonoscopy, and reached interactive stereoscopic rendering rates of more than 10 frames per second on a 16-processor SGI Challenge.

[1] S. Adelson and L. Hodges, Stereoscopic Ray-Tracing The Visual Computer, vol. 10, no. 3, pp. 127-144, Dec. 1993.
[2] S. Adelson and C. Hansen, Fast Stereoscopic Images with Ray-Traced Volume Rendering Proc. 1994 Proc. Symp. Volume Visualization, pp. 3-9, Oct. 1994.
[3] L. Carpenter, The A-Buffer, an Antialiased Hidden-Surface Method Proc. SIGGRAPH, pp. 103-108, July 1984.
[4] S. Chen and L. Williams, View Interpolation for Image Synthesis Proc. SIGGRAPH '93, pp. 279-288, 1993.
[5] D. Cohen and Z. Sheffer, Proximity Clouds An Acceleration Technique for 3D Grid Traversal The Visual Computer, vol. 10, no. 11, pp. 27-38, 1994.
[6] D. Cohen-Or, E. Rich, U. Lerner, and V. Shenkar, A Real-Time Photo-Realistic Visual Flythrough IEEE Trans. Visualization and Computer Graphics, vol. 2, no. 3, pp. 255-264, Sept. 1996.
[7] K. Fant, A Nonaliasing, Real-Time Spatial Transform Technique IEEE Computer Graphics and Applications, vol. 6, no. 1, pp. 71-80, Jan. 1986.
[8] T. He and A. Kaufman, Fast Stereo Volume Rendering Proc. IEEE Visualization Conf., pp. 49-56, Oct. 1996.
[9] L. Hodges, Tutorial: Time-Multiplexed Stereoscopic Computer Graphics IEEE Computer Graphics and Applications, vol. 12, no. 2, pp. 20-30, Mar. 1992.
[10] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He, Virtual Voyage: Interactive Navigation in the Human Colon Proc. SIGGRAPH, pp. 27-34, 1997.
[11] P. Lacroute, Real-Time Volume Rendering on Shared Memory Multiprocessors Using the Shear-Warp Factorization Proc. Parallel Rendering Symp., pp. 15-22, 1995.
[12] C. Lee and Y. Shin, An Efficient Ray-Tracing Method for Terrain Rendering Proc. Pacific Graphics, pp. 181-193, 1995.
[13] M. Levoy, “Display of Surfaces from Volume Data,” IEEE Computer Graphics and Applications, vol. 8, no. 3, pp. 29-37, 1988.
[14] W. Mark, Post-Rendering 3D Image Warping: Visibility, Reconstruction, and Performance for Depth-Image Warping PhD dissertation (also UNC Technical Report TR99-022), Univ. of North Carolina at Chapel Hill, 1999.
[15] N. Max, Hierarchical Rendering of Trees from Precomputed Multi-Layer Z-Buffers Proc. Eurographics Rendering Workshop, pp. 165-174, 1996.
[16] Stereo Computer Graphics and Other True 3D Technologies. D. McAllister, ed., Princeton Univ. Press, 1993.
[17] L. McMillan and G. Bishop, Plenoptic Modeling: An Image-Based Rendering System Proc. SIGGRAPH, pp. 39-46, 1995.
[18] L. McMillan, An Image-Based Approach to Three-Dimensional Computer Graphics PhD dissertation (also UNC Technical Report 97-013), Univ. of North Carolina at Chapel Hill, 1997.
[19] V. Nalwa, A Guide Tour of Computer Vision. Addison-Wesley, 1993.
[20] J. Nieh and M. Levoy, Volume Rendering on Scalable Shared-Memory MIMD Architectures Proc. 1992 Workshop Volume Visualization, pp. 17-24, Oct. 1992.
[21] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan, Interactive Ray Tracing for Isosurface Rendering Proc. IEEE Visualization Conf., pp. 233-238, Oct. 1998.
[22] H. Pfister, M. Zwicher, J. van Baar, and M. Gross, Surfels: Surface Elements as Rendering Primitives Proc. SIGGRAPH, pp. 335-342, 2000.
[23] V. Popescu, A. Lastra, D. Aliaga, and M. Neto, Efficient Warping for Architectural Walkthroughs Using Layered Depth Images Proc. IEEE Visualization Conf., pp. 211-215, Oct. 1998.
[24] V. Popescu, J. Eyles, A. Lastra, J. Steinhurst, N. England, and L. Nyland, The WarpEngine: An Architecture for the Post-Polygonal Age Proc. SIGGRAPH, pp. 433-442, 2000.
[25] J. Shade, S. Gortler, L. He, and R. Szeliski, Layered Depth Images Proc. SIGGRAPH, pp. 231-242, 1998.
[26] M. Wan, Q. Tang, A. Kaufman, Z. Liang, and M. Wax, Volume-Rendering Based Interactive Navigation within Human Colon Proc. IEEE Visualization Conf., pp. 397-400, Oct. 1999.
[27] M. Wan, A. Kaufman, and S. Bryson, High Performance Presence-Accelerated Ray Casting Proc. IEEE Visualization Conf., pp. 379-386, Oct. 1999.
[28] M. Wan, H. Qu, and A. Kaufman, Virtual Flythrough over a Voxel-Based Terrain Proc. IEEE Virtual Reality Conf., pp. 53-60, Mar. 1999.
[29] M. Wan, N. Zhang, A. Kaufman, and H. Qu, Interactive Stereoscopic Rendering of Voxel-Based Terrain Proc. IEEE Virtual Reality Conf., pp. 197-205, Mar. 2000.
[30] S. You, L. Hong, M. Wan, K. Junyaprasert, A. Kaufman, S. Muraki, Y. Zhou, M. Wax, and Z. Liang, Interactive Volume Rendering for Virtual Colonoscopy Proc. IEEE Visualization Conf., pp. 433-436, Oct. 1997.
[31] M. Zwicher, H. Pfister, J. van Baar, and M. Gross, Surface Splatting Proc. SIGGRAPH, pp. 371-378, July 2001.

Index Terms:
3D voxel-based environment, stereoscopic rendering, ray casting, 3D warping, splatting, antialiasing, virtual flythrough, virtual colonoscopy.
Ming Wan, Nan Zhang, Huamin Qu, Arie E. Kaufman, "Interactive Stereoscopic Rendering of Volumetric Environments," IEEE Transactions on Visualization and Computer Graphics, vol. 10, no. 1, pp. 15-28, Jan.-Feb. 2004, doi:10.1109/TVCG.2004.1260755
Usage of this product signifies your acceptance of the Terms of Use.