
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Kathleen S. Bonnell, Mark A. Duchaineau, Daniel R. Schikore, Bernd Hamann, Kenneth I. Joy, "Material Interface Reconstruction," IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 4, pp. 500511, OctoberDecember, 2003.  
BibTex  x  
@article{ 10.1109/TVCG.2003.1260744, author = {Kathleen S. Bonnell and Mark A. Duchaineau and Daniel R. Schikore and Bernd Hamann and Kenneth I. Joy}, title = {Material Interface Reconstruction}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {9}, number = {4}, issn = {10772626}, year = {2003}, pages = {500511}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2003.1260744}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Material Interface Reconstruction IS  4 SN  10772626 SP500 EP511 EPD  500511 A1  Kathleen S. Bonnell, A1  Mark A. Duchaineau, A1  Daniel R. Schikore, A1  Bernd Hamann, A1  Kenneth I. Joy, PY  2003 KW  Eulerian flow KW  material boundaries KW  material interfaces KW  finite elements KW  barycentric coordinates KW  volume fraction KW  isosurface extraction. VL  9 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract—This paper presents an algorithm for material interface reconstruction for data sets where fractional material information is given as a percentage for each element of the underlying grid. The reconstruction problem is transformed to a problem that analyzes a dual grid, where each vertex in the dual grid has an associated barycentric coordinate tuple that represents the fraction of each material present. Material boundaries are constructed by analyzing the barycentric coordinate tuples of a tetrahedron in material space and calculating intersections with Voronoi cells that represent the regions where one material dominates. These intersections are used to calculate intersections in the Euclidean coordinates of the tetrahedron. By triangulating these intersection points, one creates the material boundary. The algorithm can treat data sets containing any number of materials. The algorithm can also create nonmanifold boundary surfaces if necessary. By clipping the generated material boundaries against the original cells, one can examine the error in the algorithm. Error analysis shows that the algorithm preserves volume fractions within an error range of 0.5 percent per material.
[1] G.M. Nielson, Tools for Triangulations and Tetrahedrizations and Constructing Functions Defined over Them Scientific Visualization: Overviews, Methodologies, and Techniques, G.M. Nielson, H. Hagen, and H. Müller, eds., pp. 429525, 1997.
[2] A. Okabe, B. Boots, and K. Sugihara, Spatial Tesselations—Concepts and Applications of Voronoi Diagrams. Chichester: Wiley, 1992.
[3] W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics (SIGGRAPH '87 Proc.), vol. 21, pp. 163169, 1987.
[4] G.M. Nielson and B. Hamann, The Asymptotic Decider: Removing the Ambiguity in Marching Cubes Proc. Visualization '91, pp. 8391, 1991.
[5] Y. Zhou, B. Chen, and A. Kaufman, Multiresolution Tetrahedral Framework for Visualizing Regular Volume Data Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 135142, 1997.
[6] W.F. Noh and P. Woodward, SLIC (Simple Line Interface Calculation) Lecture Notes in Physics, A.I. van der Vooren and P.J. Zandbergen, eds., pp. 330340, SpringerVerlag, 1976.
[7] D.L. Youngs, TimeDependent MultiMaterial Flow with Large Fluid Distortion Numerical Methods for Fluid Dynamics, K.W. Morton and J.J. Baines, eds., pp. 273285, Academic Press, 1982.
[8] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski, VolumeofFluid Interface Tracking with Smoothed Surface Stress Methods for ThreeDimensional Flows J. Computational Physics, vol. 152, pp. 423456, 1999.
[9] J.E. Pilliod and E.G. Puckett, SecondOrder Accurate VolumeofFluid Algorithms for Tracking Material Interfaces technical report, Lawrence Berkeley Nat'l Laboratory, 2000.
[10] G.M. Nielson and R. Franke, Computing the Separating Surface for Segmented Data Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 229234, Oct. 1997.
[11] K. Bonnell, D. Schikore, M. Duchaineau, B. Hamann, and K.I. Joy, Constructing Material Interfaces from Data Sets with VolumeFraction Information Proc. IEEE Visualization 2000, T. Ertl, B. Hamann, and A. Varshney, eds., pp. 367372, Oct. 2000.
[12] A. Hanson,"Geometry for NDimensional Graphics," Graphics Gems IV, P. Heckbert, ed., Academic Press, 1994, p. 167.
[13] K. Bonnell, On Material Boundary Surfaces MS thesis, Dept. of Computer Science, Univ. of California, Davis, June 2000.