This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Transitive Mesh Space of a Progressive Mesh
October-December 2003 (vol. 9 no. 4)
pp. 463-480
Junho Kim, IEEE Computer Society
Seungyong Lee, IEEE Computer Society

Abstract—This paper investigates the set of all selectively refined meshes that can be obtained from a progressive mesh. We call the set the transitive mesh space of a progressive mesh and present a theoretical analysis of the space. We define selective edge collapse and vertex split transformations, which we use to traverse all selectively refined meshes in the transitive mesh space. We propose a complete selective refinement scheme for a progressive mesh based on the transformations and compare the scheme with previous selective refinement schemes in both theoretical and experimental ways. In our comparison, we show that the complete scheme always generates selectively refined meshes with smaller numbers of vertices and faces than previous schemes for a given refinement criterion. The concept of dual pieces of the vertices in the vertex hierarchy plays a central role in the analysis of the transitive mesh space and the design of selective edge collapse and vertex split transformations.

[1] P.S. Heckbert and M. Garland, Survey of Polygonal Surface Simplification Algorithms SIGGRAPH '97 Course Notes No. 25, 1997.
[2] P. Cignoni, C. Montani, and R. Scopigno, A Comparison of Mesh Simplification Algorithms Computers&Graphics, vol. 22, no. 1, pp. 37-54, 1998.
[3] D. Luebke, "Developer's Survey of Polygonal Simplification Algorithms," IEEE Computer Graphics and Applications, vol. 21, no. 3, May/June, 2001, pp. 24-35.
[4] H. Hoppe, “Progressive Meshes,” Proc. SIGGRAPH '96, pp. 99-108, 1996.
[5] H. Hoppe, “View-Dependent Refinement of Progressive Meshes,” Proc. SIGGRAPH '97, pp. 189-198, 1997.
[6] L. Kobbelt, S. Campagna, J. Vorsatz, and H.P. Seidel, “Interactive Multiresolution Modeling on Arbitrary Meshes,” Proc. ACM SIGGRAPH, pp. 105-114, July 1998.
[7] I. Guskov, W. Sweldens, and P. Schröder, “Multiresolution Signal Processing for Meshes,” SIGGRAPH '99 Proc., Computer Graphics Proc., Ann. Conf. Series, Aug. 1999.
[8] R. Pajarola and J. Rossignac, Compressed Progressive Meshes IEEE Trans. Visualization and Computer Graphics, vol. 6, no. 1, pp. 79-92, 2000.
[9] J.C. Xia and A. Varshney, Dynamic View-Dependent Simplification for Polygonal Meshes Proc. Visualization '96, R. Yagel and G.M. Nielson, eds., pp. 327-334, 1996.
[10] J. El-Sana and A. Varshney, Generalized View-Dependent Simplification Computer Graphics Forum (Proc. Eurographics '99), vol. 18, no. 3, pp. 83-94, 1999.
[11] J.V. Carreira, D. Costa, and J.G. Silva, Fault Injection Spot-Checks Computer System Dependability IEEE Spectrum, vol. 36, pp. 50-55, Aug. 1999.
[12] R. Pajarola, Fastmesh: Efficient View-Depenent Meshing Proc. Pacific Graphics 2001, pp. 22-30, 2001.
[13] P. Lindstrom et al., "Real-Time, Continuous Level of Detail Rendering of Height Fields," Proc. Siggraph 96, ACM Press, New York, 1996, pp. 109-118.
[14] H. Hoppe, Smooth View-Dependent Level-of-Detail Control and Its Application to Terrain Rendering Proc. IEEE Visualization '98, pp. 35-42, 1998.
[15] J. Rossignac and P. Borrel, Multi-Resolution 3D Approximations for Rendering Complex Scenes Geometric Modeling in Computer Graphics, B. Falcidieno and T.L. Kunii, eds., pp. 455-465, 1993.
[16] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, “Decimation of Triangle Meshes,” Proc. SIGGRAPH '92, pp. 65-70, 1992.
[17] D. Luebke and C. Erikson, “View-Dependent Simplification of Arbitrary Polygonal Environments,” Proc. SIGGRAPH '97, pp. 199-208, 1997.
[18] D. Schmalstieg and G. Schaufler, Smooth Levels of Detail Proc. IEEE Virtual Reality Ann. Int'l Symp. (VRAIS '97), pp. 12-19, 1997.
[19] L.D. Floriani, P. Magillo, and E. Puppo, Efficient Implementation of Multi-Triangluation Proc. IEEE Visualization '98, pp. 18-23, 1998.
[20] H. Hoppe, T. DeRose, T. Dunchamp, J. McDonald, and W. Stuetzle, Mesh Optimization Technical Report TR 93-01-01, Univ. of Washington, 1993.
[21] T.K. Dey, H. Edelsbrunner, S. Guha, and D.V. Nekhayev, Topology Preserving Edge Contraction Technical Report rgi-tech-98-018, Raindrop Geomagic, 1998.
[22] A.J. Willmott, P.S. Heckbert, and M. Garland, Face Cluster Radiosity Rendering Techniques '99 (Proc. 10th Eurographics Workshop Rendering), pp. 293-304, 1999.
[23] M. Garland, A. Willmott, and P.S. Heckbert, Hierarchical Face Clustering on Polygonal Surfaces Proc. 2001 ACM Symp. Interactive 3D Graphics, pp. 49-58, 2001.
[24] C.C. Pinter, Set Theory. Addison-Wesley, 1971.
[25] T.H. Cormen,C.E. Leiserson, and R.L. Rivest,Introduction to Algorithms.Cambridge, Mass.: MIT Press/McGraw-Hill, 1990.
[26] M. Garland and P.S. Heckbert, "Surface Simplification Using Quadric Error Metrics," Proc. Siggraph 97, ACM Press, New York, 1997, pp. 209-216.
[27] L.A. Shirman and S.S. Abi-Ezzi, The Cone of Normals Technique for Fast Processing of Curved Patches Computer Graphics Forum (Proc. Eurographics '93), vol. 12, no. 3, pp. 261-272, 1993.
[28] T.S. Gieng, B. Hamann, K.I. Joy, G.L. Schussman, and I.J. Trotts, Constructing Hierarchies for Triangle Meshes IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 145-161, Apr.-June 1998.
[29] I. Guskov and Z.J. Wood, Topological Noise Removal Proc. Graphics Interface 2001, pp. 19-26, 2001.

Index Terms:
Progressive mesh, selective refinement, selectively refined mesh, transitive mesh space, hierarchical partitioning property, dual piece, valid vertex front.
Citation:
Junho Kim, Seungyong Lee, "Transitive Mesh Space of a Progressive Mesh," IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 4, pp. 463-480, Oct.-Dec. 2003, doi:10.1109/TVCG.2003.1260742
Usage of this product signifies your acceptance of the Terms of Use.