This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces
October-December 2003 (vol. 9 no. 4)
pp. 454-462

Abstract—We present a new method for visualizing 3D volumetric diffusion tensor MR images. We distinguish between linear anisotropy and planar anisotropy and represent values in the two regimes using streamtubes and streamsurfaces, respectively. Streamtubes represent structures with primarily linear diffusion, typically fiber tracts; streamtube direction correlates with tract orientation. The cross-sectional shape and color of each streamtube represent additional information from the diffusion tensor at each point. Streamsurfaces represent structures in which diffusion is primarily planar. Our algorithm chooses a very small representative subset of the streamtubes and streamsurfaces for display. We describe the set of metrics used for the culling process, which reduces visual clutter and improves interactivity. We also generate anatomical landmarks to identify the locations of such structures as the eyes, skull surface, and ventricles. The final models are complex surface geometries that can be imported into many interactive graphics software environments. We describe a virtual environment to interact with these models. Expert feedback from doctors studying changes in white-matter structures after gamma-knife capsulotomy and preoperative planning for brain tumor surgery shows that streamtubes correlate well with major neural structures, the 2D section and geometric landmarks are important in understanding the visualization, and the stereo and interactivity from the virtual environment aid in understanding the complex geometric models.

[1] P.J. Basser, J. Mattiello, and D. Lebihan, Estimation of the Effective Self-Diffusion Tensor from the NMR Spin-Echo J. Magnetic Resonance B, vol. 103, no. 3, pp. 247-254, Mar. 1994.
[2] P.J. Basser, S. Pajevic, C. Pierpaoli, J. Duda, and A. Aldroubi, In Vivo Fiber Tractography Using DT-MRI Data Magnetic Resonance in Medicine, vol. 44, pp. 625-632, 2000.
[3] R.L. Bishop and R.J. Crittenden, Geometry of Manifolds. Academic Press, 1964.
[4] J. Cormans, R. Luypaert, F. Verhelle, T. Stadnik, and M. Osteaux, A Method for Myelin Fiber Orientation Mapping Using Diffusion-Weighted MR Images Magnetic Resonance Imaging, vol. 44, pp. 443-454, 1994.
[5] C. Cruz-Neira, D. Sandin, and T. DeFanti, "Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE," Proc. SIGGRAPH 1993, ACM Press, New York, 1993, pp. 135-142.
[6] T. Delmarcelle and L. Hesselink, "Visualizing Second-Order Tensor Fields with Hyperstreamlines," IEEE Computer Graphics and Applications, vol. 13, no. 4, pp. 25-33, 1993.
[7] D.F. Scollan, A. Holmes, R. Winslow, and J. Forder, Histological Validation of Myocardial Microstructure Obtained from Diffusion Tensor Magnetic Resonance Imaging Am. J. Physiology, vol. 275, pp. H2308-2318, 1998.
[8] M.A.Z. Dippé and E.H. Wold, Antialiasing through Stochastic Sampling Computer Graphics (SIGGRAPH '85 Proc.), B.A. Barsky, ed., vol. 19, pp. 69-78, July 1985.
[9] E.W. Hsu, A.L. Muzikant, S.A. Matulevicius, R.C. Penland, and C.S. Henriquez, Magnetic Resonance Myocardial Fiber-Orientation Mapping with Direct Histological Correlation. Am. J. Physiology, vol. 274, pp. H1627-1634, 1998.
[10] J. V. Hajnal, M. Doran, A.S. Hall, A.G. Collins, A. Oatridge, J.M. Pennock, I.R. Young, and G.M. Bydder, MR Imaging of Anisotropically Restricted Diffusion of Water in the Nervous System: Technical, Anatomic and Pathologic Considerations J. Computer Assisted Tomography, vol. 15, pp. 1-18, 1991.
[11] G.L. Kindlmann and D.M. Weinstein, Hue-Balls and Lit-Tensors for Direct Volume Rendering of Diffusion Tensor Fields Proc. IEEE Visualization '99, pp. 183-190, 1999.
[12] D.H. Laidlaw, E.T. Ahrens, D. Kremers, M.J. Avalos, C. Readhead, and R.E. Jacobs, Visualizing Diffusion Tensor Images of the Mouse Spinal Cord Proc. Visualization '98, 1998.
[13] L.R. Frank, Anisotropy in High Angular Resolution Diffusion-Weighted MRI Magnetic Resonance in Medicine, vol. 45, pp. 935-939, 2001.
[14] M.E. Moseley, J. Kuckarczyk, H.S. Asgari, and D. Norman, Anisotropy of Diffusion-Weighted MRI Magnetic Resonance in Medicine, vol. 19, pp. 321-326, 1991.
[15] S. Mori, B.J. Crain, V.P. Chacko, and P.C.M. van Zijl, Three Dimensional Tracking of Axonal Projections in the Brain by Magnetic Resonance Imaging Ann. Neurology, vol. 45, pp. 265-269, 1999.
[16] C. Pierpaoli and P.J. Basser, Toward a Quantitative Assessment of Diffusion Anisotropy Magnetic Resonance in Medicine, vol. 36, pp. 893-906, 1996.
[17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C. Cambridge Univ. Press, 1992.
[18] R.R. Dickinson, A Unified Approach to the Design of Visualization Software for the Analysis of Field Problems Three-Dimensional Visualization and Display Technologies (Proc. SPIE), pp. 173-180, 1989.
[19] C. Upson et al., "The Application Visualization System: A Computational Environment for Scientific Visualization," IEEE Computer Graphics and Applications, Vol. 9, No. 4, July 1989, pp. 30-42.
[20] D.M. Weinstein, G.L. Kindlmann, and E.C. Lundberg, Tensorlines: Advection-Diffusion Based Propagation through Diffusion Tensor Fields Proc. IEEE Visualization '99, pp. 249-254, 1999.
[21] C.F. Westin, S.E. Maier, B. Khidhir, P. Everett, F.A. Jolesz, and R. Kikinis, Image Processing for Diffusion Tensor Magnetic Resonance Imaging Proc. Int'l Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI '99), pp. 441-452, 1999.
[22] C.F. Westin, S. Peled, H. Gubjartsson, R. Kikinis, and F.A. Jolesz, Geometrical Diffusion Measures for MRI from Tensor Basis Analysis Proc. Int'l Soc. Magnetic Resonance in Medicine (ISMRM), 1997.
[23] R. Xue, P.C.M. van Zijl, B.J. Crain, M. Solaiyappan, and S. Mori, In Vivo Three-Dimensional Reconstruction of Rat Brain Axonal Projections by Diffusion Tensor Imaging Magnetic Resonance in Medicine, vol. 42, pp. 1123-1127, 1999.
[24] S. Zhang, Ç. Demiralp, D. Keefe, M. DaSilva, B.D. Greenberg, P.J. Basser, C. Pierpaoli, E.A. Chiocca, T.S. Deisboeck, and D. Laidlaw, An Immersive Virtual Environment for DT-MRI Volume Visualization Applications: A Case Study Proc. IEEE Visualization '01, pp. 437-440, Oct. 2001.
[25] S. Zhang and D. Laidlaw, Elucidating Neural Structure in Diffusion Tensor MRI Volumes Using Streamtubes and Streamsurfaces Proc. Int'l Soc. Magnetic Resonance in Medicine (ISMRM), 2001.
[26] S. Zhang, D.H. Laidlaw, Ç. Demiralp, M. DaSilva, D.F. Keefe, B.D. Greenberg, P.J. Basser, C. Pierpaoli, E.A. Chiocca, and T.S. Deisboeck, Toward Application of Virtual Reality to Visualization of DT-MRI Volumes Proc. Int'l Conf. Medical Image Computing and Computer-Assisted Intervention (MICCAI '01), Oct. 2001.

Index Terms:
Diffusion tensor imaging, DT-MRI, DTI, hyperstreamline, immersive virtual reality, streamsurface, streamtube, scientific visualization, volume visualization.
Citation:
Song Zhang, ?agatay Demiralp, David H. Laidlaw, "Visualizing Diffusion Tensor MR Images Using Streamtubes and Streamsurfaces," IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 4, pp. 454-462, Oct.-Dec. 2003, doi:10.1109/TVCG.2003.1260740
Usage of this product signifies your acceptance of the Terms of Use.