
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Ralf K?hler, Mark Simon, HansChristian Hege, "Interactive Volume Rendering of Large Sparse Data Sets Using Adaptive Mesh Refinement Hierarchies," IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 3, pp. 341351, JulySeptember, 2003.  
BibTex  x  
@article{ 10.1109/TVCG.2003.1207442, author = {Ralf K?hler and Mark Simon and HansChristian Hege}, title = {Interactive Volume Rendering of Large Sparse Data Sets Using Adaptive Mesh Refinement Hierarchies}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {9}, number = {3}, issn = {10772626}, year = {2003}, pages = {341351}, doi = {http://doi.ieeecomputersociety.org/10.1109/TVCG.2003.1207442}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Interactive Volume Rendering of Large Sparse Data Sets Using Adaptive Mesh Refinement Hierarchies IS  3 SN  10772626 SP341 EP351 EPD  341351 A1  Ralf K?hler, A1  Mark Simon, A1  HansChristian Hege, PY  2003 KW  3D texture mapping KW  hierarchical space partitioning KW  AMR tree KW  octree KW  sparse volume data. VL  9 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract—In this paper, we present an algorithm that accelerates 3D texturebased volume rendering of large, sparse data sets, i.e., data sets where only a fraction of the voxels contain relevant information. In texturebased approaches, the rendering performance is affected by the fillrate, the size of texture memory, and the texture I/O bandwidth. For sparse data, these limitations can be circumvented by restricting most of the rendering work to the relevant parts of the volume. In order to efficiently enclose the corresponding regions with axisaligned boxes, we employ a hierarchical data structure, known as an AMR (Adaptive Mesh Refinement) tree. The hierarchy is generated utilizing a clustering algorithm. A good balance is thereby achieved between the size of the enclosed volume, i.e., the amount to render in graphics hardware and the number of axisaligned regions, i.e., the number of texture coordinates to compute in software. The waste of texture memory by the poweroftwo restriction is minimized by a 3D packing algorithm which arranges texture bricks economically in memory. Compared to an octree approach, the rendering performance is significantly increased and less parameter tuning is necessary.
[1] http://jeanluc.ncsa.uiuc.edu/Codes3DCluster , 2001.
[2] http://www.caip.rutgers.edu/parasharDAGH , 1998.
[3] Amira User's Guide and Reference Manual, Amira Programmer's Guide. KonradZuseZentrum für Informationstechnik Berlin (ZIB) and Indeed Visual Concepts GmbH, Berlin,http:/www.amir avis.com, 2001.
[4] W.G. Aref and H. Samet, An Algorithm for Perspective Viewing of Objects Represented by Octrees Computer Graphics Forum, vol. 14, no. 1, pp. 5966, 1995.
[5] M.J. Berger and P. Collela, Local Adaptive Mesh Refinement for Shock Hydrodynamics J. Computational Physics, vol. 82, no. 1, pp. 6484, 1989.
[6] M.J. Berger and I. Rigoutsos, "An Algorithm for Point Clustering and Grid Generation," IEEE Trans. Systems, Man, and Cybernetics, Vol. 21, No. 5, Sept. 1991, pp. 12781286.
[7] I. Boada, I. Navazo, and R. Scopigno, Multiresolution Volume Visualization with a TextureBased Octree The Visual Computer, vol. 17, no. 5, pp. 185197, 2001.
[8] B. Cabral, N. Cam, and J. Foran, Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware Proc. 1994 Symp. Volume Visualization, A. Kaufman and W. Krueger, eds., pp. 9198, 1994.
[9] D. Cohen and Z. Sheffer, Proximity Clouds: An Acceleration Technique for 3D Grid Traversal The Visual Computer, vol. 11, pp. 2738, 1994.
[10] J.M. Danskin and P. Hanrahan, Fast Algorithms for Volume Ray Tracing Proc. Workshop Volume Visualization, pp. 9198, Oct. 1992.
[11] R.A. Drebin, L. Carpenter, and P. Hanrahan, Volume Rendering Computer Graphics (Proc. SIGGRAPH 88), vol. 22, no. 4, pp. 6574, Aug. 1988.
[12] S. Fang, R. Srinivasan, S. Huang, and R. Raghavan, Deformable Volume Rendering by 3D Texture Mapping and Octree Encoding Proc. IEEE Visualization, R. Yagel and G.M. Nielson, eds., pp. 7380, 1996.
[13] D.S. Johnson, E.G. Coffman Jr., M.R. Garey, and R.E. Tarjan, Performance Bounds for LevelOriented Two Dimensional Packing Algorithms SIAM J. Computing, vol. 9, pp. 808826, 1980.
[14] E. LaMar, B. Hamann, and K. Joy, "Multiresolution Techniques for Interactive TextureBased Volume Visualization", Proc. IEEE Visualization 99, ACM Press, 1999, pp. 355362.
[15] D. Laur and P. Hanrahan, Hierarchical Splatting: A Progressive Refinement Algorithm for Volume Rendering Computer Graphics (Proc. SIGGRAPH 91), vol. 25, no. 4, pp. 285288, July 1991.
[16] C.H. Lee and K.H. Park, Fast Volume Rendering Using Adaptive Block Subdivision Pacific Graphics, Oct. 1997.
[17] M. Levoy, Efficient Ray Tracing of Volume Data ACM Trans. Graphics, vol. 9, no. 3, pp. 245261, July 1990.
[18] K. Li and K.H. Cheng, On ThreeDimensional Packing SIAM J. Computing, vol. 19, no. 5, pp. 847867, 1990.
[19] K.L. Ma, Parallel Rendering of 3D AMR Data on the SGI/Cray T3E Proc. Seventh Symp. Frontiers of Massively Parallel Computation, pp. 138145, 1999.
[20] M. Segal and K. Akely The OpenGL Graphics Sytem (Version 1.3),http://www.opengl.org/developersdocumentation , 2001.
[21] H.W. Shen, L.J. Chiang,, and K.L. Ma,"A Fast Volume Rendering Algorithm for TimeVarying Fields Using a TimeSpace Partitioning (TSP) Tree," Proc. Visualization 99, IEEE Press, 1999, pp. 371377.
[22] H.W. Shen, D. Ellsworth, and L.J. Chiang, Accelerating TimeVarying Hardware Volume Rendering Using TSP Trees and ColorBased Error Metrics Proc. Visualization and Graphics Symp., pp. 119128, 2000.
[23] R. Srinivasan, S. Fang, and S. Huang, MultiObject Volume Rendering Algorithm by Octree Projection Proc. SPIE Conf. Image Display, vol. 3335, pp. 462468, 1998.
[24] K.R. Subramanian and D.S. Fussell, "Applying Space Subdivision Techniques to Volume Rendering," Proc. Visualization '90,San Francisco, Calif, Oct.2326, 1990.
[25] X. Tong, W. Wang, W. Tsang, and Z. Tang, Efficiently Rendering Large Volume Data Using Texture Mapping Hardware Proc. Joint EUROGRAPHICS IEEE TVCG Symp. Visualization, May 1999.
[26] G.H. Weber, H. Hagen, B. Hamann, K.I. Joy, T.J. Ligocki, K.L. Ma, and J. Shalf, Visualization of Adaptive Mesh Refinement Data Proc. IS&T/SPIE Electronic Imaging, vol. 4302, 2001.
[27] G.H. Weber, O. Kreylos, T.J. Ligocki, J.M. Shalf, H. Hagen, B. Hamann, and K.I. Joy, HighQuality Volume Rendering of Adaptive Mesh Refinement Data Proc. Vision, Modeling, and Visualization, pp. 121128, 2001.
[28] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl, LevelofDetail Volume Rendering via 3D Textures Proc. IEEE Volume Visualization and Graphics Symp., pp. 713, 1994.
[29] O. Wilson, A. VanGelder, and J. Wilhelms, Direct Volume Rendering via 3D Textures Technical Report UCSCCRL9419, Univ. of California, Santa Cruz, 1994.
[30] K. Zuiderveld, A. Koning, and M. Viergever, Acceleration of RayCasting Using 3D Distance Transforms Proc. Visualization in Biomedical Computing, pp. 324335, 1992.