This Article 
 Bibliographic References 
 Add to: 
Interactive Volume Rendering of Large Sparse Data Sets Using Adaptive Mesh Refinement Hierarchies
July-September 2003 (vol. 9 no. 3)
pp. 341-351

Abstract—In this paper, we present an algorithm that accelerates 3D texture-based volume rendering of large, sparse data sets, i.e., data sets where only a fraction of the voxels contain relevant information. In texture-based approaches, the rendering performance is affected by the fill-rate, the size of texture memory, and the texture I/O bandwidth. For sparse data, these limitations can be circumvented by restricting most of the rendering work to the relevant parts of the volume. In order to efficiently enclose the corresponding regions with axis-aligned boxes, we employ a hierarchical data structure, known as an AMR (Adaptive Mesh Refinement) tree. The hierarchy is generated utilizing a clustering algorithm. A good balance is thereby achieved between the size of the enclosed volume, i.e., the amount to render in graphics hardware and the number of axis-aligned regions, i.e., the number of texture coordinates to compute in software. The waste of texture memory by the power-of-two restriction is minimized by a 3D packing algorithm which arranges texture bricks economically in memory. Compared to an octree approach, the rendering performance is significantly increased and less parameter tuning is necessary.

[1] , 2001.
[2] , 1998.
[3] Amira User's Guide and Reference Manual, Amira Programmer's Guide. Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) and Indeed Visual Concepts GmbH, Berlin,http:/www.amir, 2001.
[4] W.G. Aref and H. Samet, An Algorithm for Perspective Viewing of Objects Represented by Octrees Computer Graphics Forum, vol. 14, no. 1, pp. 59-66, 1995.
[5] M.J. Berger and P. Collela, Local Adaptive Mesh Refinement for Shock Hydrodynamics J. Computational Physics, vol. 82, no. 1, pp. 64-84, 1989.
[6] M.J. Berger and I. Rigoutsos, "An Algorithm for Point Clustering and Grid Generation," IEEE Trans. Systems, Man, and Cybernetics, Vol. 21, No. 5, Sept. 1991, pp. 1278-1286.
[7] I. Boada, I. Navazo, and R. Scopigno, Multiresolution Volume Visualization with a Texture-Based Octree The Visual Computer, vol. 17, no. 5, pp. 185-197, 2001.
[8] B. Cabral, N. Cam, and J. Foran, Accelerated Volume Rendering and Tomographic Reconstruction Using Texture Mapping Hardware Proc. 1994 Symp. Volume Visualization, A. Kaufman and W. Krueger, eds., pp. 91-98, 1994.
[9] D. Cohen and Z. Sheffer, Proximity Clouds: An Acceleration Technique for 3D Grid Traversal The Visual Computer, vol. 11, pp. 27-38, 1994.
[10] J.M. Danskin and P. Hanrahan, Fast Algorithms for Volume Ray Tracing Proc. Workshop Volume Visualization, pp. 91-98, Oct. 1992.
[11] R.A. Drebin, L. Carpenter, and P. Hanrahan, Volume Rendering Computer Graphics (Proc. SIGGRAPH 88), vol. 22, no. 4, pp. 65-74, Aug. 1988.
[12] S. Fang, R. Srinivasan, S. Huang, and R. Raghavan, Deformable Volume Rendering by 3D Texture Mapping and Octree Encoding Proc. IEEE Visualization, R. Yagel and G.M. Nielson, eds., pp. 73-80, 1996.
[13] D.S. Johnson, E.G. Coffman Jr., M.R. Garey, and R.E. Tarjan, Performance Bounds for Level-Oriented Two Dimensional Packing Algorithms SIAM J. Computing, vol. 9, pp. 808-826, 1980.
[14] E. LaMar, B. Hamann, and K. Joy, "Multiresolution Techniques for Interactive Texture-Based Volume Visualization", Proc. IEEE Visualization 99, ACM Press, 1999, pp. 355-362.
[15] D. Laur and P. Hanrahan, Hierarchical Splatting: A Progressive Refinement Algorithm for Volume Rendering Computer Graphics (Proc. SIGGRAPH 91), vol. 25, no. 4, pp. 285-288, July 1991.
[16] C.H. Lee and K.H. Park, Fast Volume Rendering Using Adaptive Block Subdivision Pacific Graphics, Oct. 1997.
[17] M. Levoy, Efficient Ray Tracing of Volume Data ACM Trans. Graphics, vol. 9, no. 3, pp. 245-261, July 1990.
[18] K. Li and K.-H. Cheng, On Three-Dimensional Packing SIAM J. Computing, vol. 19, no. 5, pp. 847-867, 1990.
[19] K.-L. Ma, Parallel Rendering of 3D AMR Data on the SGI/Cray T3E Proc. Seventh Symp. Frontiers of Massively Parallel Computation, pp. 138-145, 1999.
[20] M. Segal and K. Akely The OpenGL Graphics Sytem (Version 1.3), , 2001.
[21] H.-W. Shen, L.-J. Chiang,, and K.-L. Ma,"A Fast Volume Rendering Algorithm for Time-Varying Fields Using a Time-Space Partitioning (TSP) Tree," Proc. Visualization 99, IEEE Press, 1999, pp. 371-377.
[22] H.-W. Shen, D. Ellsworth, and L.-J. Chiang, Accelerating Time-Varying Hardware Volume Rendering Using TSP Trees and Color-Based Error Metrics Proc. Visualization and Graphics Symp., pp. 119-128, 2000.
[23] R. Srinivasan, S. Fang, and S. Huang, Multi-Object Volume Rendering Algorithm by Octree Projection Proc. SPIE Conf. Image Display, vol. 3335, pp. 462-468, 1998.
[24] K.R. Subramanian and D.S. Fussell, "Applying Space Subdivision Techniques to Volume Rendering," Proc. Visualization '90,San Francisco, Calif, Oct.23-26, 1990.
[25] X. Tong, W. Wang, W. Tsang, and Z. Tang, Efficiently Rendering Large Volume Data Using Texture Mapping Hardware Proc. Joint EUROGRAPHICS IEEE TVCG Symp. Visualization, May 1999.
[26] G.H. Weber, H. Hagen, B. Hamann, K.I. Joy, T.J. Ligocki, K.-L. Ma, and J. Shalf, Visualization of Adaptive Mesh Refinement Data Proc. IS&T/SPIE Electronic Imaging, vol. 4302, 2001.
[27] G.H. Weber, O. Kreylos, T.J. Ligocki, J.M. Shalf, H. Hagen, B. Hamann, and K.I. Joy, High-Quality Volume Rendering of Adaptive Mesh Refinement Data Proc. Vision, Modeling, and Visualization, pp. 121-128, 2001.
[28] M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl, Level-of-Detail Volume Rendering via 3D Textures Proc. IEEE Volume Visualization and Graphics Symp., pp. 7-13, 1994.
[29] O. Wilson, A. VanGelder, and J. Wilhelms, Direct Volume Rendering via 3D Textures Technical Report UCSC-CRL-94-19, Univ. of California, Santa Cruz, 1994.
[30] K. Zuiderveld, A. Koning, and M. Viergever, Acceleration of Ray-Casting Using 3D Distance Transforms Proc. Visualization in Biomedical Computing, pp. 324-335, 1992.

Index Terms:
3D texture mapping, hierarchical space partitioning, AMR tree, octree, sparse volume data.
Ralf K?hler, Mark Simon, Hans-Christian Hege, "Interactive Volume Rendering of Large Sparse Data Sets Using Adaptive Mesh Refinement Hierarchies," IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 3, pp. 341-351, July-Sept. 2003, doi:10.1109/TVCG.2003.1207442
Usage of this product signifies your acceptance of the Terms of Use.