This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Dynamic Line Integral Convolution for Visualizing Streamline Evolution
July-September 2003 (vol. 9 no. 3)
pp. 273-282

Abstract—The depiction of time-dependent vector fields is a central problem in scientific visualization. This article describes a technique for generating animations of such fields where the motion of the streamlines to be visualized is given by a second “motion” vector field. Each frame of our animation is a Line Integral Convolution of the original vector field with a time-varying input texture. The texture is evolved according to the associated motion vector field via an automatically adjusted set of random particles. We demonstrate this technique with examples from electromagnetism.

[1] J. Becker and M. Rumpf, Visualization of Time-Dependent Velocity Fields by Texture Transport Proc. Visualization in Scientific Computing '98, Eurographics Workshop, pp. 91-101, 1998.
[2] J. Belcher and S. Olbert, Field Line Motion in Classical Electromagnetism Am. J. Physics, submitted, 2001.
[3] B. Cabral and C. Leedom, Imaging Vector Fields Using Line Integral Convolution Proc. SIGGRAPH '93, pp. 263-270, 1993.
[4] L.K. Forsell and S.D. Cohen, Using Line Integral Convolution for Flow Visualization: Curvilinear Grids, Variable-Speed Animation, and Unsteady Flows IEEE Trans. Visualization and Computer Graphics, vol. 1, no. 2, pp. 133-141, June 1995.
[5] W. Freeman, E. Adelson, and D. Heeger, Motion without Movement ACM Computer Graphics, vol. 25, no. 4, pp. 27-30, 1991.
[6] B. Jobard, G. Erlebacher, and M.Y. Hussaini, “Hardware-Accelerated Texture Advection for Unsteady Flow Visualization,” Proc. Visualization 2000, T.E. Ertl, B. Hamann, and A. Varshney, eds., pp. 155-162, Oct. 2000.
[7] B. Jobard, G. Erlebacher, and M.Y. Hussaini, “Lagrangian-Eulerian Advection for Unsteady Flow Visualization,” Proc. IEEE Visualization 2001, Oct. 2001.
[8] B. Jobard and W. Lefer, The Motion Map: Efficient Computation of Steady Flow Animations Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 323-328, Oct. 1997.
[9] N. Max and B. Becker, Flow Visualization Using Moving Textures Proc. ICASE/LaRC Symp. Visualizing Time Varying Data, Nov. 1995.
[10] H.-W. Shen and D.L. Kao, “Uflic: A Line Integral Convolution Algorithm for Visualizing Unsteady Flows,” Proc. Visualization '97, pp. 317-322, 1997.
[11] H.-W. Shen and D.L. Kao, “A New Line Integral Convolution Algorithm for Visualizing Time-Varying Flow Fields,” IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 98-108, Apr.-June 1998.
[12] D. Stalling and H.-C. Hege, Fast and Resolution Independent Line Integral Convolution Proc. SIGGRAPH '95, pp. 249-256, 1995.
[13] D. Stalling, Fast Texture-Based Algorithms for Vector Field Visualization doctoral dissertation, Dept. of Scientific Visualization, Konrad-Zuse-Zentrum Berlin (ZIB), 1998.
[14] A. Sundquist, Dynamic Line Integral Convolution for Visualizing Electromagnetic Phenomena master's thesis, Dept. of Electrical Eng.&Computer Science, Massachusetts Ins. of Tech nology, May 2001.
[15] R. Wegenkittl, E. Gröller, and W. Purgathofer, “Animating Flowfields: Rendering of Oriented Line Integral Convolution,” Proc. IEEE Visualization '97, pp. 119-125, 1997.

Index Terms:
Line integral convolution, time-dependent, time-varying, vector fields, field lines, streamlines, electromagnetism.
Citation:
Andreas Sundquist, "Dynamic Line Integral Convolution for Visualizing Streamline Evolution," IEEE Transactions on Visualization and Computer Graphics, vol. 9, no. 3, pp. 273-282, July-Sept. 2003, doi:10.1109/TVCG.2003.1207436
Usage of this product signifies your acceptance of the Terms of Use.