The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January-March (2002 vol.8)
pp: 1-8
ABSTRACT
<p><b>Abstract</b>—Never before in history has data been generated at such high volumes as it is today. Exploring and analyzing the vast volumes of data is becoming increasingly difficult. Information visualization and visual data mining can help to deal with the flood of information. The advantage of visual data exploration is that the user is directly involved in the data mining process. There are a large number of information visualization techniques which have been developed over the last decade to support the exploration of large data sets. In this paper, we propose a classification of information visualization and visual data mining techniques which is based on the <it>data type to be visualized</it>, the <it>visualization technique</it>, and the <it>interaction and distortion technique</it>. We exemplify the classification using a few examples, most of them referring to techniques and systems presented in this special section.</p>
INDEX TERMS
Information visualization, visual data mining, visual data exploration, classification.
CITATION
Daniel A. Keim, "Information Visualization and Visual Data Mining", IEEE Transactions on Visualization & Computer Graphics, vol.8, no. 1, pp. 1-8, January-March 2002, doi:10.1109/2945.981847
61 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool