This Article 
 Bibliographic References 
 Add to: 
Information Visualization and Visual Data Mining
January-March 2002 (vol. 8 no. 1)
pp. 1-8

Abstract—Never before in history has data been generated at such high volumes as it is today. Exploring and analyzing the vast volumes of data is becoming increasingly difficult. Information visualization and visual data mining can help to deal with the flood of information. The advantage of visual data exploration is that the user is directly involved in the data mining process. There are a large number of information visualization techniques which have been developed over the last decade to support the exploration of large data sets. In this paper, we propose a classification of information visualization and visual data mining techniques which is based on the data type to be visualized, the visualization technique, and the interaction and distortion technique. We exemplify the classification using a few examples, most of them referring to techniques and systems presented in this special section.

[1] B. Shneiderman, "The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations," Proc. IEEE Symp. Visual Languages, IEEE CS Press, 1996, pp. 336-343.
[2] S.K. Card, J.D. Mackinlay, and B. Shneiderman, Readings in Information Visualization, Morgan Kaufmann, San Francisco, 1999.
[3] C. Ware, Information Visualization: Perception for Design. San Diego, Calif.: Academic Press, 2000.
[4] B. Spence, Information Visualization. Pearson Education Higher Education Publishers, 2000.
[5] H. Schumann and W. Müller, Visualisierung: Grundlagen und allgemeine Methoden. Springer, 2000.
[6] D. Keim, “Visual Exploration of Large Databases,” Comm. ACM, vol. 44, no. 8, pp. 38-44, 2001.
[7] L. Nowell, S. Havre, B. Hetzler, and P. Whitney, “Themeriver: Visualizing Thematic Changes in Large Document Collections,” IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 1, pp. 9-20, Jan.-Mar. 2002.
[8] D. Tang, C. Stolte, and P. Hanrahan, “Polaris: A System for Query, Analysis and Visualization of Multidimensional Relational Databases,” IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 1, pp. 52-65, Jan.-Mar. 2002.
[9] J. Abello and J. Korn, “MGV: A System for Visualizing Massive Multidigraphs,” IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 1, pp. 21-38, Jan.-Mar. 2002.
[10] N. Lopez, M. Kreuseler, and H. Schumann, “A Scalable Framework for Information Visualization,” IEEE Trans. Visualization and Computer Graphics, vol. 8, no. 1, pp. 39-51, Jan.-Mar. 2002.
[11] D.A. Keim, "Designing Pixel-Oriented Visualization Techniques: Theory and Applications," IEEE Trans. Visualization and Computer Graphics, vol. 6, no. 1, Jan.-Mar. 2000, pp. 59-78.
[12] B. Shneiderman, “Tree Visualization with Treemaps: A 2D Space-Filling Approach,” ACM Trans. Graphics, vol. 11, no. 1, pp. 92-99, 1992.
[13] B. Johnson and B. Shneiderman, “Treemaps: A Space-Filling Approach to the Visualization of Hierarchical Information,” Proc. Visualization '91 Conf., pp. 284-291, 1991.
[14] M.O. Ward, "XmdvTool: Integrating Multiple Methods for Visualizing Multivariate Data," Proc. Visualization '94, IEEE CS Press, 1994, pp. 326-336.
[15] D. Asimov, “The Grand Tour: A Tool For Viewing Multidimensional Data,” SIAM J. Science and Statistical Computing, vol. 6, pp. 128-143, 1985.
[16] A. Inselberg and B. Dimsdale, "Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry," Proc. Visualization '90, IEEE CS Press, 1990, pp. 361-370.
[17] J.A. Wise et al., "Visualizing the Nonvisual: Spatial Analysisand Interaction with Information from Text Documents," Proc. Info. Vis. Symp. 95, N. Gershon and S.G. Eick, eds., IEEE CS Press, Los Alamitos, Calif., 1995, pp. 51-58.
[18] C. Chen, Information Visualisation and Virtual Environments. London: Springer-Verlag, 1999.
[19] M. Dodge, “Web Visualization,” VISIBILITY/hom.{ps.gz,pdf}http:// , Oct. 2001.
[20] G.D. Battista, P. Eades, R. Tamassia, and I.G. Tollis, Graph Drawing. Prentice Hall, 1999.
[21] J. Trilk, “Software Visualization,” ~trilksv.html, Oct. 2001.
[22] D.F. Andrews, “Plots of High-Dimensional Data,” Biometrics, vol. 29, pp. 125-136, 1972.
[23] W.S. Cleveland, Visualizing Data. Summit, N.J.: Hobart Press, 1993.
[24] P.J. Huber, “The Annals of Statistics,” Projection Pursuit, vol. 13, no. 2, pp. 435-474, 1985.
[25] G.W. Furnas and A. Buja, “Prosections Views: Dimensional Inference through Sections and Projections,” J. Computational and Graphical Statistics, vol. 3, no. 4, pp. 323-353, 1994.
[26] R. Spence et al., “Visualization for Functional Design,” Proc. Int'l Symp. Information Visualization (InfoVis '95), pp. 4-10, 1995.
[27] J.J. van Wijk and R.D. van Liere, “Hyperslice,” Proc. Visualization '93, pp. 119-125, 1993.
[28] H. Chernoff, “The Use of Faces to Represent Points in k-Dimensional Space Graphically,” J Am. Statistical Assoc., vol. 68, pp. 361-368, 1973.
[29] R.M. Pickett and G.G. Grinstein, “Iconographic Displays for Visualizing Multidimensional Data,” Proc. IEEE Conf. Systems, Man, and Cybernetics, pp. 514-519, 1988.
[30] H. Levkowitz, “Color Icons: Merging Color and Texture Perception for Integrated Visualization of Multiple Parameters,” Proc. Visualization '91, Oct. 1991.
[31] D.A. Keim and H.-P. Kriegel, “VisDB: Database Exploration Using Multidimensional Visualization,” IEEE Computer Graphics&Applications, pp. 40-49, Sept. 1994.
[32] M.A. Hearst, "TileBars: Visualization of Term Distribution Information in Full Text Information Access," Proc. ACM Conf. on Human Factors in Computing Systems (CHI 95), ACM Press, New York, 1995, pp. 59-66.
[33] D.A. Keim, H.-P. Kriegel, and M. Ankerst, “Recursive Pattern: A Technique for Visualizing Very Large Amounts of Data,” Proc. Visualization '95, pp. 279-286, 1995.
[34] M. Ankerst, D.A. Keim, and H.-P. Kriegel, “Circle Segments: A Technique for Visually Exploring Large Multidimensional Data Sets,” Proc. Visualization '96, Hot Topic Session, 1996.
[35] J. LeBlanc, M.O. Ward, and N. Wittels, “Exploring N-Dimensional Databases,” Proc. Visualization '90, pp. 230-239, 1990.
[36] S. Feiner and C. Beshers, “Visualizing n-Dimensional Virtual Worlds with n-Vision,” Computer Graphics, vol. 24, no. 2, pp. 37-38, 1990.
[37] G.G. Robertson, J.D. Mackinlay, and S.K. Card, "Cone Trees: Animated 3D Visualizations of Hierarchical Information," Proc. ACM Conf. Human Factors in Computer Systems (CHI 91), ACM Press, 1991, pp. 189-194.
[38] D.F. Swayne, D. Cook, and A. Buja, “User's Manual for XGobi: A Dynamic Graphics Program for Data Analysis,” Bellcore technical memorandum, 1992.
[39] A. Buja, D.F. Swayne, and D. Cook, “Interactive High-Dimensional Data Visualization,” J. Computational and Graphical Statistics, vol. 5, no. 1, pp. 78-99, 1996.
[40] L. Tierney, Lispstat: An Object-Orientated Environment for Statistical Computing and Dynamic Graphics. New York: Wiley, 1991.
[41] D.B. Carr, E.J. Wegman, and Q. Luo, “Explorn: Design Considerations Past and Present,” Technical Report No. 129, Center for Computational Statistics, George Mason Univ., 1996.
[42] E.A. Bier et al., "Toolglass and Magic Lenses: The See-Through User Interface," Proc. Siggraph, ACM Press, New York, 1993, pp. 73-80.
[43] K. Fishkin and M.C. Stone, “Enhanced Dynamic Queries via Movable Filters,” Proc. Human Factors in Computing Systems CHI '95 Conf., pp. 415-420, 1995.
[44] A. Spoerri, "InfoCrystal: A Visual Tool for Information Retrieval," in Proc. Visualization 93, IEEE Computer Society Press, Los Alamitos, Calif., Oct. 1993, pp. 150-157.
[45] K. Koffka, Principles of Gestalt Psychology. New York: Harcourt-Brace, 1935. C. Ahlberg, and B. Shneiderman, “Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays,” Proc. Conf. Human Factors and Computing Systems (CHI '94), pp. 313-317, 479-480, 1994.
[46] S.G. Eick, “Data Visualization Sliders,” Proc. ACM UIST, pp. 119-120, 1994.
[47] J. Goldstein and S.F. Roth, “Using Aggregation and Dynamic Queries for Exploring Large Data Sets,” Proc. Human Factors in Computing Systems CHI '94 Conf., pp. 23-29, 1994.
[48] R. Rao and S.K. Card, “The Table Lens: Merging Graphical and Symbolic Representation in an Interactive Focus+Context Visualization for Tabular Information,” Proc. Human Factors in Computing Systems CHI '94 Conf., pp. 318-322, 1994.
[49] K. Perlin and D. Fox, “Pad: An Alternative Approach to the Computer Interface,” Proc. SIGGRAPH, pp. 57-64, 1993.
[50] B. Bederson, “Pad++: Advances in Multiscale Interfaces,” Proc. Human Factors in Computing Systems CHI '94 Conf., p. 315, 1994.
[51] B.B. Bederson and J.D. Hollan, “Pad++: A Zooming Graphical Interface for Exploring Alternate Interface Physics,” Proc. Seventh Ann. ACM Symp. User Interface Software and Technology (UIST), pp. 17-26, 1994.
[52] C. Ahlberg and E. Wistrand, "IVEE: An Information Visualization and Exploration Environment," Proc. Information Visualization 95, Oct. 1995, IEEE Computer Soc. Press, Los Alamitos, Calif., pp. 66-73.
[53] V. Anupam, S. Dar, T. Leibfried, and E. Petajan, “DataSpace: 3-D Visualization of Large Databases,” Proc. Int'l Symp. Information Visualization, pp. 82-88, 1995.
[54] D. Schaffer, Z. Zuo, L. Bartram, J. Dill, S. Dubs, S. Greenberg, and M. Roseman, “Comparing Fisheye and Full-Zoom Techniques for Navigation of Hierarchically Clustered Networks,” Proc. Graphics Interface (GI '93), pp. 87-96, 1993.
[55] Y. Leung and M. Apperley, “A Review and Taxonomy of Distortion-Oriented Presentation Techniques,” Proc. Human Factors in Computing Systems CHI '94 Conf., pp. 126-160, 1994.
[56] M.S.T. Carpendale, D.J. Cowperthwaite, and F.D. Fracchia, IEEE Computer Graphics and Applications, special issue on information visualization, vol. 17, no. 4, pp. 42-51, July 1997.
[57] R. Spence and M. Apperley, “Data Base Navigation: An Office Environment for the Professional,” Behaviour and Information Technology, vol. 1, no. 1, pp. 43-54, 1982.
[58] J.D. Mackinlay, G.G. Robertson, and S.K. Card, “The Perspective Wall: Detail and Context Smoothly Integrated,” Proc. Human Factors in Computing Systems CHI '91 Conf., pp. 173-179, 1991.
[59] G.W. Furnas, "Generalized Fisheye Views," Proc. CHI '86, Addison-Wesley, Reading, Mass., 1986, pp. 16-23.
[60] M. Sarkar and M. Brown, “Graphical Fisheye Views,” Comm. ACM, vol. 37, no. 12, pp. 73-84, 1994.
[61] J. Lamping, R. Rao, and P. Pirolli, “A Focus + Context Technique Based on Hyperbolic Geometry for Visualizing Large Hierarchies,” Proc. Human Factors in Computing Systems CHI '95 Conf., pp. 401-408, 1995.
[62] T. Munzner and P. Burchard, “Visualizing the Structure of the World Wide Web in 3D Hyperbolic Space,” Proc. VRML '95 Symp., pp. 33-38, 1995.
[63] B. Alpern and L. Carter, “Hyperbox,” Proc. Visualization '91, pp. 133-139, 1991.
[64] R. Becker, J.M. Chambers, and A.R. Wilks, The New s Language. Pacific Grove, Calif.: Wadsworth&Brooks/Cole Advanced Books and Software, 1988.
[65] R.A. Becker, W.S. Cleveland, and M.-J. Shyu, “The Visual Design and Control of Trellis Display,” J. Computational and Graphical Statistics, vol. 5, no. 2, pp. 123-155, 1996.
[66] P.F Velleman, Data Desk 4.2: Data Description. Ithaca, N.Y.: Data Desk, 1992.
[67] A. Wilhelm, A.R. Unwin, and M. Theus, “Software for Interactive Statistical Graphics—A Review,” Proc. Int'l Softstat 95 Conf., 1995.

Index Terms:
Information visualization, visual data mining, visual data exploration, classification.
Daniel A. Keim, "Information Visualization and Visual Data Mining," IEEE Transactions on Visualization and Computer Graphics, vol. 8, no. 1, pp. 1-8, Jan.-March 2002, doi:10.1109/2945.981847
Usage of this product signifies your acceptance of the Terms of Use.