This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
An Attempt for Coloring Multichannel MR Imaging Data
July-September 2001 (vol. 7 no. 3)
pp. 265-274

Abstract—This is an elementary research for assigning color values to voxels of multichannel Magnetic Resonance Imaging (MRI) volume data. The MRI volume data sets obtained under different scanning conditions are transformed to the components by independent component analysis (ICA), which enhances physical characteristics of the tissue. The transfer functions for generating color values from independent components are obtained using the radial basis function network, a kind of neural net, by training the network with sample data chosen from visible human female data set (VHF). The resultant color volume data sets correspond well with the full-color cross-sections of the visible human data sets.

[1] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He, "Virtual Voyage: Interactive Navigation In The Human Colon," Computer Graphics, pp. 27-34, Aug. 1997. ACM/SIGGRAPH Press.
[2] D. Metaxas, N. Ayache, J.S. Duncan, S.F. Gibson, E. Grimson, R. Kikinis, and N.M. Thalmann, “Modeling Techniques for Medical Applications,” SIGGRAPH '99 Course Notes 33, 1999.
[3] O. Shibolet and D. Cohen-Or, “Coloring Voxel-Based Objects for Virtual Endoscopy,” Proc. 1998 Symp. Volume Visualization, pp. 15-22, 1998.
[4] T. He et al., "Generation of Transfer Functions with Stochastic Search Techniques," Proc. Visualization 96, ACM Press, New York, 1996, pp. 227-234, 489.
[5] G. Kindlmann and J.W. Durkin, “Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering,” Proc. 1998 Volume Visualization Symp., pp. 79-86, Oct. 1998.
[6] A.B. Wolbarst, Physics of Radiology. Appleton&Lange, 1993.
[7] T.-W. Lee, Independent Component Analysis. Kluwer Academic, 1998.
[8] S. Muraki and T. Nakai, “Independent Component Analysis of Multi-Channel MRI Data,” Proc. Int'l Soc. Magnietic Resonance in Medicine 2000, p. 582, 2000.
[9] K.L. Weiss, S.C. Stiving, E.E. Herderick, J.F. Cornhill, and D.W. Chakeres, “Hybrid Color MR Imaging Display,” Am. J. Roentgenology, vol. 149, pp. 825-829, 1987.
[10] B. Alfano, A. Brunetti, A. Ciarmiello, and M. Salvatore, “Simultaneous Display of Multiple MR Parameters with 'Quantitative Magnetic Color Imaging',” J. Computer Assisted Tomography, vol. 16, no. 4, pp. 634-640, 1992.
[11] M. Quarantelli, B. Alfano, M. Larobina, E. Tedeschi, A. Brunettie, E.M. Covelli, A. Ciarmiello, C. Mainolfi, and M. Salvatore, “Frequency Encoding for Simultaneous Display of Multimodality Images,” J. Nuclear Medicine, vol. 40, no. 3, 1999.
[12] K. Rehm, S.C. Strother, J.R. Anderson, K.A. Schaper, and D.A. Rottenberg, “Display of Merged Multimodality Brain Images Using Interleaved Pixel with Independent Color Scales,” J. Nuclear Medicine, vol. 35, no. 11, pp. 1815-1821, 1994.
[13] C.M. Bishop, Neural Networks for Pattern Recognition. Clarendon Press, 1995.
[14] http://www.nlm.nih.gov/research/visiblevisible_human.html , 2001.
[15] L. Brown, “A Survey of Image Registration Techniques,” ACM Computing Surveys, vol. 24, no. 4, pp. 325-376, 1992.
[16] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens, “Multimodality Image Registration by Maximization of Mutual Information,” IEEE Trans. Medical Imaging, vol. 16, no. 2, pp. 187-198, 1997.
[17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, second ed. Cambridge Univ. Press, 1992.
[18] http://www.cnl.salk.edu/~tewon/Blindblind_audio.html , 2001.
[19] M.J. McKeown, S. Makeig, G.G. Brown, T.P. Jung, S.S. Kindermann, A.J. Bell, and T.J. Sejnowski, “Analysis of fMRI Data by Blind Separation into Independent Spatial Components,” Human Brain Mapping, vol. 6, pp. 160-188, 1998.
[20] A.J. Bell and T.J. Sejnowski, An Information-Maximization Approach to Blind Separation and Blind Deconvolution Neural Computation, vol. 7, no. 6, June 1995.
[21] H. Yang and S. Amari, “Adaptive On-Line Learning Algorithms for Blind Separation—Maximum Entropy and Minimum Mutual Information,” Neural Computation, vol. 9, pp. 1457-1482, 1997.
[22] J. Karhunen, E. Oja, L. Wang, R. Vigario, and J. Joutsensalo, “A Class of Neural Networks for Independent Component Analysis,” IEEE Trans. Neural Networks, vol. 8, no. 3, pp. 486-504, 1997.
[23] A. Hyvarinen, Fast and Robust Fixed-Point Algorithm for Independent Component Analysis IEEE Trans. Neural Networks, vol. 10, pp. 626-634, 1999.
[24] A.W. Toga, Brain Warping. Academic Press, 1999.
[25] D. Wishart, “Numerical Classification Method for Deriving Natural Classes,” Nature, vol. 221, no. 5175, pp. 97-98, 1968.
[26] Y. Nishimori, “Learning Algorithm for Independent Component Analysis by Geodesic Flows on Orthogonal Group,” Proc. Int'l Joint Conf. Neural Networks '99, 1999.
[27] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK Users' Guide, Release 1.0. Philadelphia: SIAM, 1992.

Index Terms:
Color MRI, independent component analysis, transfer function.
Citation:
Shigeru Muraki, Toshiharu Nakai, Yasuyo Kita, Koji Tsuda, "An Attempt for Coloring Multichannel MR Imaging Data," IEEE Transactions on Visualization and Computer Graphics, vol. 7, no. 3, pp. 265-274, July-Sept. 2001, doi:10.1109/2945.942694
Usage of this product signifies your acceptance of the Terms of Use.