This Article 
 Bibliographic References 
 Add to: 
Topology-Preserving Smoothing of Vector Fields
July-September 2001 (vol. 7 no. 3)
pp. 222-229

Abstract—In this paper, we propose a technique for topology-preserving smoothing of sampled vector fields. The vector field data is first converted into a scalar representation in which time surfaces implicitly exist as level-sets. We then locally analyze the dynamic behavior of level-sets by placing geometric primitives in the scalar field and by subsequently distorting these primitives with respect to local variations in this field. From the distorted primitives, we calculate the curvature normal and we use the normal magnitude and its direction to separate distinct flow features. Geometrical and topological considerations are then combined to successively smooth dense flow fields, at the same time retaining their topological structure.

[1] H. Battke, D. Stalling, and H.-C. Hege, “Fast Line Integral Convolution for Arbitrary Surfaces in 3D,” Visualization and Math., pages 181-195, Springer, 1997.
[2] B. Cabral and L.C. Leedom, "Imaging Vector Fields Using Line Integral Convolution," Computer Graphics (SIGGRAPH '93 Proc.), pp. 263-272, 1993.
[3] W. Cai and P.-A. Heng, “Principal Stream Surfaces,” Proc. IEEE Visualization '93, pp. 75-80, 1997.
[4] R. Crawfis and N. Max, “Direct Volume Visualization of Three-Dimensional Vector Fields,” Proc. ACM Workshop Volume Visualization, pp. 55-60, 1992.
[5] R.A. Crawfis and N. Max, "Texture Splats for 3D Scalar and Vector Field Visualization," Visualization 93, G.M. Nielson and D. Bergeron, eds., IEEE Computer Society Press, Los Alamitos, Calif., 1993, pp. 261-265.
[6] M. Desbrun, M. Meyer, P. Schroeder, and A. Baar, “Discrete Differential-Geometry Operators in ND,” technical report, California Inst. of Tech nology, 2000.
[7] M. Desbrun, M. Meyer, P. Schröder, and A.H. Barr, “Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow,” SIGGRAPH '99 Proc., Computer Graphics Proc., Ann. Conf. Series, Aug. 1999.
[8] G. Farin, Curves and Surfaces for CAGD, third ed. Academic Press, 1993.
[9] L.K. Forsell and S.D. Cohen, Using Line Integral Convolution for Flow Visualization: Curvilinear Grids, Variable-Speed Animation, and Unsteady Flows IEEE Trans. Visualization and Computer Graphics, vol. 1, no. 2, pp. 133-141, June 1995.
[10] K. Fujiwara, “Eigenvalues of Laplacians on a Closed Riemannian Manifold and Its Nets,” Proc. AMS 123, pp. 2585-2594, 1995.
[11] H. Garke, T. Preussner, M. Rumpf, A. Telea, U. Weikard, and J. van Wijk, “A Continuous Clustering Method for Vector Fields,” Proc. Visualization '00, pp. 351-358, 2000.
[12] B. Heckel, G. Weber, B. Hamann, and K.I. Joy, “Construction of Vector Field Hierarchies,” Proc. IEEE Visualization '99, pp. 19-25, 1999.
[13] L. Hesselink and T. Delmarcelle, “Visualization of Vector and Tensor Data Sets,” Scientific Visualization—Advances and Challenges, pp. 367-390, Academic Press, 1994.
[14] J.P.M. Hultquist, "Constructing Stream Surfaces in Steady 3D Vector Fields," Visualization '92, A.E. Kaufmann and G.M. Nielson, eds., pp. 171-177, 1992.
[15] V. Interrante and C. Grosch, “Strategies for Effectively Visualizing 3D Flow with Volume LIC,” Proc. IEEE Visualization 97, pp. 421-424, 1997.
[16] B. Jobard and W. Lefer, “Creating Evenly-Spaced Streamlines of Arbitrary Density,” Proc. EG-ViSC '97, pp. 102-107, 1997.
[17] L. Kobbelt, “Discrete Fairing,” Proc. IMA Conf. Math. of Surfaces, pp. 101-131, 1997.
[18] S. Lodha, J.C. Renteria, and K.M. Roskin, Topology Preserving Compression of 2D Vector Fields Proc. IEEE Visualization '00, pp. 343-350, Oct. 2000.
[19] N. Max, R. Crawfis, and C. Grant, “Visualizing 3D Velocity Fields Near Contour Surface,” Proc. IEEE Visualization '94, pp. 248-254, 1994.
[20] C. Rezk-Salama, P. Hastreiter, C. Teitzel, and T. Ertl, “Interactive Exploration of Volume Line Integral Convolution Based on 3D-Texture Mapping,” Proc. IEEE Visualization '99, pp. 233-240, 1999.
[21] J.A. Setian, Level Set Methods and Fast Marching Methods. Cambridge Univ., Cambridge, U.K., 1999.
[22] H.-W. Shen and D.L. Kao, “Uflic: A Line Integral Convolution Algorithm for Visualizing Unsteady Flows,” Proc. Visualization '97, pp. 317-322, 1997.
[23] H.W. Shen, K.L. Ma, and C.R. Johnson, “Global and Local Vector Field Visualization Using Enhanced Line Integral Convolution,” Proc. ACM Symp. Volume Visualization, pp. 63-70, 1996.
[24] D. Stalling and H.-C. Hege, “Fast and Resolution Independent Line Integral Convolution,” SIGGRAPH 95 Conf. Proc., pp. 249-256, Aug. 1995.
[25] G. Taubin, "A Signal Processing Approach to Fair Surface Design," Computer Graphics Proc., Ann. Conf. Series, ACM Siggraph, ACM Press, New York, 1995, pp.351-358.
[26] A.C. Telea and J.J. van Wijk, “Simplified Representation of Vector Fields,” Proc. IEEE Visualization '99, pp. 35-42, 1999.
[27] X. Tricoche, G. Scheuermann, and H. Hagen, A Topology Simplification Method for 2D Vector Fields Proc. Visualization '00, pp. 359-366, Oct. 2000.
[28] G. Turk and D. Banks, “Image-Guided Streamline Placement,” Computer Graphics (Proc. SIGGRAPH '93), 1996.
[29] J.J. van Wijk, “Implicit Stream Surfaces,” Proc. IEEE Visualization '93, pp. 245-252, 1993.
[30] J.J. van Wijk, “Spot Noise-Texture Synthesis for Data Visualization,” Computer Graphics (SIGGRAPH '91 Proc.), T.W. Sederberg, ed., vol. 25, pp. 309-318, July 1991.
[31] J.J. van Wijk, “Implicit Stream Surfaces,” Proc. IEEE Visualization '93, pp. 245-252, 1993.
[32] V. Verma, D. Kao, and A. Pang, “A Flow-Guided Streamline Seeding Strategy,” Proc. Visualization '00, pp. 163-170, 2000.
[33] R. Westermann, C. Johnson, and T. Ertl, A Level-Set Method for Flow Visualization Proc. IEEE Visualization 2000, T. Ertl, B. Hamann, and A. Varshney, eds., pp. 147-154, Oct. 2000.

Index Terms:
Flow visualization.
Rüdiger Westermann, Christopher Johnson, Thomas Ertl, "Topology-Preserving Smoothing of Vector Fields," IEEE Transactions on Visualization and Computer Graphics, vol. 7, no. 3, pp. 222-229, July-Sept. 2001, doi:10.1109/2945.942690
Usage of this product signifies your acceptance of the Terms of Use.