This Article 
 Bibliographic References 
 Add to: 
Detection and Visualization of Closed Streamlines in Planar Flows
April-June 2001 (vol. 7 no. 2)
pp. 165-172

Abstract—The analysis and visualization of flows is a central problem in visualization. Topology-based methods have gained increasing interest in recent years. This article describes a method for the detection of closed streamlines in flows. It is based on a special treatment of cases where a streamline reenters a cell to prevent infinite cycling during streamline calculation. The algorithm checks for possible exits of a loop of crossed edges and detects structurally stable closed streamlines. These global features are not detected by conventional topology and feature detection algorithms.

[1] R.H. Abraham and C.D. Shaw, Dynamics—The Geometry of Behaviour, vol. 2. Santa Cruz, Calif.: Aerial Press, 1983.
[2] D. Bürkle, M. Dellnitz, O. Junge, M. Rumpf, and M. Spielberg, “Visualizing Complicated Dynamics,” Proc. IEEE Visualization '99 Late Breaking Hot Topics, A. Varshney, C.M. Wittenbrink, and H. Hagen, edis., pp. 33-36, 1999.
[3] M. Dellnitz and O. Junge, “On the Approximation of Complicated Dynamical Behavior,” SIAM J. Numerical Analysis, vol. 36, no. 2, pp. 491-515, 1999.
[4] A. Globus, C. Levit, and T. Lasinski, "A Tool for Visualizing the Topology of Three-Dimensional Vector Fields," Proc. IEEE Visualization '91, pp. 33-40, 1991.
[5] J. Guckenheimer and P. Holmes, Dynamical Systems and Bifurcation of Vector Fields. New York: Springer, 1983.
[6] R. Haimes, “Using Residence Time for the Extraction of Recirculation Regions,” AIAA Paper 99-3291, 1999.
[7] J.L. Helman and L. Hesselink, "Visualization of Vector Field Topology in Fluid Flows," IEEE Computer Graphics and Applications, vol. 11, no. 3, pp. 36-46, 1991.
[8] D.H. Hepting, G. Derks, D. Edoh, and R.R. D, “Qualitative Analysis of Invariant Tori in a Dynamical System,” Proc. IEEE Visualization '95, G.M. Nielson and D. Silver, eds., pp. 342-345, 1995.
[9] M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and LinearAlgebra. New York: Academic Press, 1974.
[10] M. Jean, “Sur la Méthode des Sections pour la Recherche de Certaines Solutions presque Périodiques de Systèmes Forces Periodiquement,” Int'l J. Non-Linear Mechanics, vol. 15, pp. 367-376, 1980.
[11] D.N. Kenwright, "Automatic Detection of Open and Closed Separation and Attachment Lines," Proc. IEEE Visualization '98, pp. 151-158, 1998.
[12] H. Koçak, F. Bisshop, T. Banchoff, and D. Laidlaw, “Topology and Mechanics with Computer Graphics,” Advances in Applied Math., vol. 7, pp. 282-308, 1986.
[13] S. Lang, Differential and Riemannian Manifolds, third ed. New York: Springer, 1995.
[14] Scientific Visualization, Overviews, Methodologies, and Techniques, G.M. Nielson, H. Hagen, and H. Müller, eds. Los Alamitos, Calif.: IEEE CS Press, 1997.
[15] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, second ed. Cambridge Univ. Press, 1992.
[16] G. Scheuermann, B. Hamann, K.I. Joy, and W. Kollmann, “Visualizing Local Vetor Field Topology,” J. Electronic Imaging, vol. 9, no. 4, 2000.
[17] G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood, “Visualizing Nonlinear Vector Field Topology,” IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 109-116, Apr.-June 1998.
[18] J. Stoer and R. Bulirsch, Numerische Mathematik 2, third ed. Berlin: Springer, 1990.
[19] M. van Veldhuizen, “A New Algorithm for the Numerical Approximation of an Invariant Curve,” SIAM J. Scientific and Statistical Computing, vol. 8, no. 6, pp. 951-962, 1987.
[20] R. Wegenkittel, H. Löffelmann, and E. Gröller, “Visualizing the Behavior of Higher Dimensional Dynamical Systems,” Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 119-125, 1997.

Index Terms:
Vector field topology, limit cycles, closed streamlines.
Thomas Wischgoll, Gerik Scheuermann, "Detection and Visualization of Closed Streamlines in Planar Flows," IEEE Transactions on Visualization and Computer Graphics, vol. 7, no. 2, pp. 165-172, April-June 2001, doi:10.1109/2945.928168
Usage of this product signifies your acceptance of the Terms of Use.