This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Detection and Visualization of Closed Streamlines in Planar Flows
April-June 2001 (vol. 7 no. 2)
pp. 165-172

Abstract—The analysis and visualization of flows is a central problem in visualization. Topology-based methods have gained increasing interest in recent years. This article describes a method for the detection of closed streamlines in flows. It is based on a special treatment of cases where a streamline reenters a cell to prevent infinite cycling during streamline calculation. The algorithm checks for possible exits of a loop of crossed edges and detects structurally stable closed streamlines. These global features are not detected by conventional topology and feature detection algorithms.

[1] R.H. Abraham and C.D. Shaw, Dynamics—The Geometry of Behaviour, vol. 2. Santa Cruz, Calif.: Aerial Press, 1983.
[2] D. Bürkle, M. Dellnitz, O. Junge, M. Rumpf, and M. Spielberg, “Visualizing Complicated Dynamics,” Proc. IEEE Visualization '99 Late Breaking Hot Topics, A. Varshney, C.M. Wittenbrink, and H. Hagen, edis., pp. 33-36, 1999.
[3] M. Dellnitz and O. Junge, “On the Approximation of Complicated Dynamical Behavior,” SIAM J. Numerical Analysis, vol. 36, no. 2, pp. 491-515, 1999.
[4] A. Globus, C. Levit, and T. Lasinski, "A Tool for Visualizing the Topology of Three-Dimensional Vector Fields," Proc. IEEE Visualization '91, pp. 33-40, 1991.
[5] J. Guckenheimer and P. Holmes, Dynamical Systems and Bifurcation of Vector Fields. New York: Springer, 1983.
[6] R. Haimes, “Using Residence Time for the Extraction of Recirculation Regions,” AIAA Paper 99-3291, 1999.
[7] J.L. Helman and L. Hesselink, "Visualization of Vector Field Topology in Fluid Flows," IEEE Computer Graphics and Applications, vol. 11, no. 3, pp. 36-46, 1991.
[8] D.H. Hepting, G. Derks, D. Edoh, and R.R. D, “Qualitative Analysis of Invariant Tori in a Dynamical System,” Proc. IEEE Visualization '95, G.M. Nielson and D. Silver, eds., pp. 342-345, 1995.
[9] M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems and LinearAlgebra. New York: Academic Press, 1974.
[10] M. Jean, “Sur la Méthode des Sections pour la Recherche de Certaines Solutions presque Périodiques de Systèmes Forces Periodiquement,” Int'l J. Non-Linear Mechanics, vol. 15, pp. 367-376, 1980.
[11] D.N. Kenwright, "Automatic Detection of Open and Closed Separation and Attachment Lines," Proc. IEEE Visualization '98, pp. 151-158, 1998.
[12] H. Koçak, F. Bisshop, T. Banchoff, and D. Laidlaw, “Topology and Mechanics with Computer Graphics,” Advances in Applied Math., vol. 7, pp. 282-308, 1986.
[13] S. Lang, Differential and Riemannian Manifolds, third ed. New York: Springer, 1995.
[14] Scientific Visualization, Overviews, Methodologies, and Techniques, G.M. Nielson, H. Hagen, and H. Müller, eds. Los Alamitos, Calif.: IEEE CS Press, 1997.
[15] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, second ed. Cambridge Univ. Press, 1992.
[16] G. Scheuermann, B. Hamann, K.I. Joy, and W. Kollmann, “Visualizing Local Vetor Field Topology,” J. Electronic Imaging, vol. 9, no. 4, 2000.
[17] G. Scheuermann, H. Krüger, M. Menzel, and A. Rockwood, “Visualizing Nonlinear Vector Field Topology,” IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 2, pp. 109-116, Apr.-June 1998.
[18] J. Stoer and R. Bulirsch, Numerische Mathematik 2, third ed. Berlin: Springer, 1990.
[19] M. van Veldhuizen, “A New Algorithm for the Numerical Approximation of an Invariant Curve,” SIAM J. Scientific and Statistical Computing, vol. 8, no. 6, pp. 951-962, 1987.
[20] R. Wegenkittel, H. Löffelmann, and E. Gröller, “Visualizing the Behavior of Higher Dimensional Dynamical Systems,” Proc. IEEE Visualization '97, R. Yagel and H. Hagen, eds., pp. 119-125, 1997.

Index Terms:
Vector field topology, limit cycles, closed streamlines.
Citation:
Thomas Wischgoll, Gerik Scheuermann, "Detection and Visualization of Closed Streamlines in Planar Flows," IEEE Transactions on Visualization and Computer Graphics, vol. 7, no. 2, pp. 165-172, April-June 2001, doi:10.1109/2945.928168
Usage of this product signifies your acceptance of the Terms of Use.