This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Vectorial Algorithm for Tracing Discrete Straight Lines in N-Dimensional Generalized Grids
April-June 2001 (vol. 7 no. 2)
pp. 97-108

Abstract—This paper presents an algorithm to trace discrete straight lines in regular grids of any dimension. Most known line tracing algorithms have been developed in ${\hbox{\rlap{Z}\kern 2.0pt{\hbox{Z}}}}^{2}$ and ${\hbox{\rlap{Z}\kern 2.0pt{\hbox{Z}}}}^{3}$ orthogonal grids. The contribution of this paper is the definition of a method to trace lines in nonorthogonal grids in any dimension. This method is not restricted to being used with a specific grid connectivity as other widespread methods are. Good performance can be achieved because only additions are used during line tracing.

[1] J.E. Bresenham, “Algorithm for Computer Control of a Digital Plotter,” IBM Systems J., vol. 4, pp. 25-30, 1965.
[2] A.E. Kaufman, “Volume Synthesis,” Proc. Sixth Int'l Workshop Discrete Geometry for Computer Imagery (DGCI 96), pp. 87-100, Nov. 1996.
[3] A.S. Glassner, Graphics Gems.Cambridge, Mass.: AP Professional, 1990.
[4] G. Sakas, M. Grimm, and A. Savapoulos, “Optimized Maximum Intensity Projection (MIP),” Proc. Eurographics Workshop, pp. 51-63, June 1995.
[5] J.D. Foley,A. van Dam,S.K. Feiner,, and J.F. Hughes,Computer Graphics: Principles and Practice,Menlo Park, Calif.: Addison-Wesley, 1990.
[6] S. Matej and R.M. Lewit, “Efficient 3D Grids for Image Reconstruction Using Spherically-Symmetric Volume Elements,” IEEE Trans. Nuclear Science, vol. 42, no. 4, pp. 1361-1370, Aug. 1995.
[7] S. Matej, G.T. Herman, and A. Vardi, “Binary Tomography on the Hexagonal Grid Using Gibbs Priors,” Int'l J. Imaging Systems Technology, vol. 9, pp. 126-131, 1998.
[8] G.T. Herman, “Finitary 1-Simply Connected Digital Spaces,” Graphical Models and Image Processing, vol. 60, no. 1, pp. 46-56, Jan. 1998.
[9] G.T. Herman and E. Zhao, “Jordan Surfaces in Simply Connected Digital Spaces,” J. Math. Imaging and Vision, vol. 6, pp. 121-138, 1996.
[10] G.T. Herman, “Biomedical Applications of Digital Geometry,” Proc. Third IEEE-EMBS Int'l Summer School, June 1998.
[11] J. Serra, Image Analysis and Mathematical Morphology. Academic Press, 1982.
[12] R. Ulichney, Digital Halftoning. Cambridge, Mass.: MIT Press, 1987.
[13] J.H. Conway and N.J.A. Sloane, Sphere Packing Lattice and Groups, second ed. Springer-Verlag, 1993.
[14] G.E. Martin, Transformation Geometry, An Introduction to Symmetry. Berlin: Springer-Verlag, 1982.
[15] D.E. Dudgeon and R.M. Mersereau, Multidimensional Digital Signal Processing.Englewood Cliffs, N.J.: Prentice Hall, 1984.
[16] L. Ibáñez, C. Hamitouche, and C. Roux, “Determination of Discrete Sampling Grids with Optimal Topological and Spectral Properties,” Proc. Sixth Int'l Workshop Discrete Geometry for Computer Imagery (DGCI 96), pp. 181-192, 1996.
[17] L. Ibáñez, C. Hamitouche, and C. Roux, “Ray-Tracing and 3-D Object Representation in the BCC and FCC Grids,” Proc. Seventh Int'l Workshop Discrete Geometry for Computer Imagery (DGCI 97), pp. 235-241, Dec. 1997 (available from:).
[18] H.S.M. Coxeter, Introduction to Geometry, second ed. John Wiley&Sons, 1969.
[19] D. Nogly and M. Schladt, “Digital Topology on Graphs,” Computer Vision and Image Understanding, vol. 63, no. 2, pp. 394-396, Mar. 1996.
[20] J-P. Reveillès, “Géométrie discrete, calculs en nombres entiers et algorithmique,” thèse de doctorat d'etat, Département d'Informatique, UniversitéLouis Pasteur, Strasbourg, 1991.
[21] E. Andrè, “Cercles discrets et rotations discretes,” thèse de doctorat, UniversitéLuis Pasteur, Strasbourg, 1992.
[22] O. Figueiredo and J.-P. Reveillès, “A Contribution to 3D Digital Lines,” Proc. Fifth Int'l Workshop Discrete Geometry for Computer Imagery (DGCI 95), pp. 187-189, Sept. 1995.
[23] E. Andres, P. Nehlig, and J. Françon, “Supercover of Straight Lines, Planes and Triangles,” Proc. Seventh Int'l Workshop Discrete Geometry for Computer Imagery (DGCI 97), pp. 243-253, 1997.
[24] J. Françon, J.-M. Schramm, and M. Tajine, “Recognizing Arithmetic Straight Lines and Planes,” Proc. Sixth Int'l Workshop Discrete Geometry for Computer Imagery (DGC I96), pp. 141-150, 1996.
[25] C.E. Kim, “Three-Dimensional Digital Line Segments,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 5, no. 2, 1983.
[26] I. Stojmenovic and R. Tosic, “Digitization Schemes and the Recognition of Digital Straight Lines, Hyperplanes, and Flats in Arbitrary Dimensions,” Contemporary Math., vol. 119, pp. 197-212, 1991.
[27] A. Rosenfeld, “Digital Straight Line Segments,” IEEE Trans. Computers, vol. 23, pp. 1264-1269, 1974.
[28] A. Kaufman, “Efficient Algorithms for 3-D Scan Conversion of Parametric Curves, Surfaces, and Volumes,” Computer Graphics, vol. 21, pp. 171-179, 1987.
[29] K. Voss, Discrete Images, Objects, and Functions in$Z^{n}$. Springer-Verlag, 1993.
[30] E. Andrès and J.-P. Reveillès, “Discrete Ray-Casting,” Proc. Eighth Int'l Conf. Discrete Geometry for Computer Imagery (DGCI '99), pp. 435-446, Mar. 1999.
[31] J. Amantides and A. Woo, “A Fast Voxel Traversal Algorithm for Ray Tracing,” Proc. EUROGRAPHICS '87, pp. 3-10, 1987.
[32] G. Ruiz, J.A. Michell, and A. Buron, "Switch-Level Fault Detection and Diagnosis Environment for MOS Digital Circuits Using Spectral Techniques," IEE Proc., Part E, vol. 139, no. 4, pp. 293-307, July 1992.
[33] P. Nehlig and C. Montani, “A Discrete Template Based Plane Casting Algorithm for Volume Viewing,” Proc. Fifth Int'l Workshop Discrete Geometry for Computer Imagery (DGCI 96), pp. 71-79, Sept. 1995.

Index Terms:
Discrete line tracing, digital topology, discrete geometry.
Citation:
Luis Ibáñez, Chafiaâ Hamitouche, Christian Roux, "A Vectorial Algorithm for Tracing Discrete Straight Lines in N-Dimensional Generalized Grids," IEEE Transactions on Visualization and Computer Graphics, vol. 7, no. 2, pp. 97-108, April-June 2001, doi:10.1109/2945.928163
Usage of this product signifies your acceptance of the Terms of Use.