This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Fast Projection-Based Ray-Casting Algorithm for Rendering Curvilinear Volumes
October-December 1999 (vol. 5 no. 4)
pp. 322-332

Abstract—We present an efficient and robust ray-casting algorithm for directly rendering a curvilinear volume of arbitrarily-shaped cells. By projecting cell-faces onto the image plane, we have effectively addressed three critical steps of the ray-casting process, namely finding the entry cell-faces for a ray, traversing along the ray from one cell to another, and reconstructing data values at the ray/cell-face intersections. Our algorithm significantly reduces rendering time, alleviates memory space consumption, and overcomes the conventional limitation requiring cells to be convex. Application of this algorithm to several commonly used curvilinear data sets has produced a favorable performance when compared with recently reported algorithms.

[1] Y. Chen, Q. Zhu, A. Kaufman, and S. Muraki, “Physically-Based Animation of Volumetric Objects,” Proc. Computer Animation '98, pp. 154-160, 1998.
[2] J. Ekaterinaris and L. Schiff, “Vortical Flows over Delta Wings and Numerical Prediction of Vortex Breakdown,” Proc. AIAA Aerospace Sciences Conf., 1990.
[3] T. Frühauf, “Raycasting of Nonregularly Structured Volume Data,” Computer Graphics Forum (Proc. EUROGRAPHICS '94), vol. 13, no. 3, pp. 294-303, 1994.
[4] M. Garrity, “Raytracing Irregular Volume,” Computer Graphics (Proc. 1990 ACM Workshop Volume Visualization), vol. 24, no. 2, pp. 35-40, 1990.
[5] A. Van Gelder and J. Wilhelms, “Rapid Exploration of Curvilinear Grids Using Direct Volume Rendering,” Proc. IEEE Visualization '93, pp. 70-77, 1993.
[6] E. Haines, “Point in Polygon Strategies,” Graphics Gems IV, P. Heckbert, ed., pp. 24-46, Academic Press, 1994.
[7] L. Hong and A. Kaufman, “Notes on Computational-Space-Based Ray-Casting for Curvilinear Volumes,” Scientific Visualization, H. Hagen and H. Rodrian, eds., IEEE CS Press, 1999.
[8] L. Hong and A. Kaufman, “Accelerated Ray-Casting for Curvilinear Volumes,” Proc. IEEE Visualization '98, pp. 247-253, 1998.
[9] C. Hung and P. Buning, “Simulation of Blunt-Fin Induced Shock Wave and Turbulent Boundary Layer Separation,” Proc. AIAA Aerospace Sciences Conf., 1984.
[10] X. Mao, L. Hong, and A. Kaufman, “Splatting of Curvilinear Volumes,” IEEE Visualization '95 Proc., pp. 61-68, Oct. 1995.
[11] N. Max, "Optical Models for Direct Volume Rendering," IEEE Trans. Visualization and Computer Graphics, Vol. 1, No. 2, June 1995, pp. 99-108.
[12] N. Max, P. Hanrahan, and R. Crawfis, “Area and Volume Coherence for Efficient Visualization of 3D Scalar Functions,” Computer Graphics (Proc. 1990 ACM Workshop Volume Visualization), vol. 24, no. 2, pp. 27-33, 1990.
[13] R. Osborne, H. Pfister, H. Lauer, N. McKenzie, S. Gibson, W. Hiatt, and T. Ohkami, “EM-Cube: An Architecture for Low-Cost Real-Time Volume Rendering,” Proc. 1997 SIGGRAPH/EUROGRAPHICS Workshop Graphics Hardware, pp. 131-138, 1997.
[14] H. Pfister and A.E. Kaufman, “Cube-4—A Scalable Architecture for Real-Time Volume Rendering,” Proc. IEEE Symp. Volume Visualization, pp. 47-54, 1996.
[15] C. Prakash and S. Manohar, “Volume Rendering of Unstructured Grids: A Voxelization Approach,” Computers and Graphics, vol. 19, no. 5, pp. 711-726, 1995.
[16] S. Ramamoorthy and J. Wilhelms, “An Analysis of Approaches to Ray-Tracing Curvilinear Grids,” Technical Report UCSC-CRL-92-07, Univ. of California at Santa Cruz, 1992.
[17] S. Rogers, D. Kwak, and U. Kau, “A Numerical Study of Three-Dimensional Incompressible Flow around Multiple Posts,” Proc. AIAA Aerospace Sciences Conf., 1986.
[18] A. Sadarjeon, T. van Walsum, A. Hin, and F. Post, “Particle Tracing Algorithms for 3D Curvilinear Grids,” Scientific Visualization: Overviews, Methodologies, and Techniques, G. Nielson, H. Hagen, and H. Müller, eds., pp. 311-335, IEEE CS Press, 1997.
[19] P. Shirley and A. Tuchman, “A Polygonal Approximation to Direct Scalar Volume Rendering,” Computer Graphics (Proc. 1990 ACM Workshop Volume Visualization), vol. 24, no. 2, pp. 63-69, 1990.
[20] C. Silva and J. Mitchell, “The Lazy Sweep Ray Casting Algorithm for Rendering Irregular Grids,” IEEE Trans. Visualization and Computer Graphics, vol. 3, no. 2, pp. 142-157, June 1997.
[21] C. Stein, B. Becker, and N. Max, “Sorting and Hardware Assisted Rendering for Volume Visualization,” Proc. 1994 ACM Symp. Volume Visualization, pp. 83-89, 1994.
[22] S. Uselton, “Volume Rendering of Computational Fluid Dynamics: Initial Results,” Technical Report RNR-91-026, NAS-NASA Ames Research Center, Moffett Field, Calif., 1991.
[23] R. Westermann and T. Ertl, “Efficiently Using Graphics Hardware in Volume Rendering Applications,” ACM Computer Graphics (SIGGRAPH '98 Proc.), pp. 169-176, Aug. 1998.
[24] J. Wilhelms, “Pursuing Interactive Visualization of Irregular Grids,” The Visual Computer, vol. 9, pp. 450-458, 1993.
[25] J. Wilhelms, J. Challinger, N. Alper, S. Ramamoorthy, and A. Vaziri, “Direct Volume Rendering of Curvilinear Volumes,” Computer Graphics (Proc. 1990 ACM Workshop Volume Visualization), vol. 24, no. 2, pp. 41-48, 1990.
[26] J. Wilhelms and A. Van Gelder, "A Coherent Projection Approach for Direct Volume Rendering," Computer Graphics, vol. 25, no. 4, pp. 275-283, July 1991.
[27] J. Wilhelms, A. Van Gelder, P. Tarantino, and J. Gibbs, “Hierarchical and Parallelizable Direct Volume Rendering for Irregular and Multiple Grids,” Proc. IEEE Visualization '96, pp. 57-64, 1996.
[28] P. Williams, “Interactive Splatting of Nonrectilinear Volumes,” Proc. IEEE Visualization '92, pp. 37-44, 1992.
[29] P. Williams, “Visibility Ordering Meshed Polyhedra,” ACM Trans. Graphics, vol. 11, no. 2, pp. 103-126, 1992.
[30] P. Williams, N. Max, and C. Stein, “A High Accuracy Volume Renderer for Unstructured Data,” IEEE Trans. Visualization and Computer Graphics, vol. 4, no. 1, pp. 37-54, Jan.-Mar. 1998.
[31] R. Yagel, D. Reed, A. Law, P.-W. Shih, and N. Shareef, "Hardware Assisted Volume Rendering of Unstructured Grids by Incremental Slicing," Proc. 1996 Symp. Volume Visualization, pp. 55-62 and p. 101, Oct. 1996.
[32] Q. Zhu, Y. Chen, and A. Kaufman, “Real-Time Biomechanically-Based Muscle Volume Deformation Using FEM,” Computer Graphics Forum (Proc. EUROGRAPHICS '98), vol. 17, no. 3, pp. 278-284, 1998.

Index Terms:
Volume rendering, irregular grid, curvilinear grid, ray-casting, projection, deformable object, dynamic simulation, scientific visualization.
Citation:
Lichan Hong, Arie E. Kaufman, "Fast Projection-Based Ray-Casting Algorithm for Rendering Curvilinear Volumes," IEEE Transactions on Visualization and Computer Graphics, vol. 5, no. 4, pp. 322-332, Oct.-Dec. 1999, doi:10.1109/2945.817349
Usage of this product signifies your acceptance of the Terms of Use.