
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Tran S. Gieng, Bernd Hamann, Kenneth I. Joy, Gregory L. Schussman, Issac J. Trotts, "Constructing Hierarchies for Triangle Meshes," IEEE Transactions on Visualization and Computer Graphics, vol. 4, no. 2, pp. 145161, AprilJune, 1998.  
BibTex  x  
@article{ 10.1109/2945.694956, author = {Tran S. Gieng and Bernd Hamann and Kenneth I. Joy and Gregory L. Schussman and Issac J. Trotts}, title = {Constructing Hierarchies for Triangle Meshes}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {4}, number = {2}, issn = {10772626}, year = {1998}, pages = {145161}, doi = {http://doi.ieeecomputersociety.org/10.1109/2945.694956}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  Constructing Hierarchies for Triangle Meshes IS  2 SN  10772626 SP145 EP161 EPD  145161 A1  Tran S. Gieng, A1  Bernd Hamann, A1  Kenneth I. Joy, A1  Gregory L. Schussman, A1  Issac J. Trotts, PY  1998 KW  Mesh simplification KW  triangle meshes KW  levelofdetail representation KW  shape approximation KW  multiresolution. VL  4 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract—We present a method to produce a hierarchy of triangle meshes that can be used to blend different levels of detail in a smooth fashion. The algorithm produces a sequence of meshes
[1] P. Cignoni, L. De Floriani, C. Montoni, E. Puppo, and R. Scopigno, "Multiresolution Modeling and Visualization of Volume Data Based on Simplicial Complexes," Proc. 1994 Symp. Volume Visualization, pp. 1926, 1994.
[2] M. Ech, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle, "Multiresolution Analysis of Arbitrary Meshes," Computer Graphics Proc. Ann. Conf. Series (Proc. Siggraph '95), pp. 173182, 1995.
[3] E.J. Stollnitz, T.D. DeRose, and D.H. Salesin, Wavelets for Computer Graphics: Theory and Applications. Morgan Kaufmann, 1996.
[4] P. Schröder and W. Sweldens, "Spherical Wavelets: Efficiently Representing Functions on the Sphere," Proc. SIGGRAPH '95 Conf., pp. 161172, 1995.
[5] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, “Decimation of Triangle Meshes,” Proc. SIGGRAPH '92, pp. 6570, 1992.
[6] K.J. Renze and J.H. Oliver, Generalized Unstructured Decimation IEEE Computer Graphics and Applications, vol. 16, no. 6, pp. 2432, Nov. 1996.
[7] H. Hoppe, “Progressive Meshes,” Proc. SIGGRAPH '96, pp. 99108, 1996.
[8] H. Hoppe, “ViewDependent Refinement of Progressive Meshes,” Proc. SIGGRAPH '97, pp. 189198, 1997.
[9] J. Popovic and H. Hoppe, “Progressive Simplicial Complexes,” Proc. SIGGRAPH '97, pp. 217224, 1997.
[10] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Mesh Optimization,” Proc. SIGGRAPH '93, pp. 1926, 1993.
[11] J. Xia and A. Varshney, "Dynamic ViewDependent Simplification for Polygonal Models," Proc. IEEE Visualization 96, ACM Press, New York, 1996, pp. 327334.
[12] M. Garland and P.S. Heckbert, "Surface Simplification Using Quadric Error Metrics," Proc. Siggraph 97, ACM Press, New York, 1997, pp. 209216.
[13] B. Hamann, "A Data Reduction Scheme for Triangulated Surfaces," Computer Aided Geometric Design, vol. 11, no. 2, pp. 197214 1994.
[14] B. Hamman, "Curvature Approximation for Triangulated Surfaces," Computing, vol. 8(supplement), pp. 139153, 1993.
[15] G. Turk, "Retiling Polygonal Surfaces," Computer Graphics(Proc. Siggraph 92), vol. 26, no. 2, 1992, pp. 5564.
[16] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal, F.P. Brooks Jr., and W.V. Wright, "Simplification Envelopes," Computer Graphics Proc. Ann. Conf. Series (Proc. Siggraph '96), pp. 119128, 1996.
[17] P. Lindstrom et al., "RealTime, Continuous Level of Detail Rendering of Height Fields," Proc. Siggraph 96, ACM Press, New York, 1996, pp. 109118.
[18] T.S. Gieng, B. Hamann, K.I. Joy, G.L. Schussman, and I.J. Trotts, Smooth Hierarchical Surface Triangulations Proc. Visualization '97, R. Yagel and H. Hagen, eds., pp. 379386, 1997.
[19] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry: Algorithms and Applications. Heidelberg: SpringerVerlag, 1997.
[20] M.P. do Carno, Differential Geometry of Curves and Surfaces.Englewood Cliffs, N.J.: Prentice Hall, 1976.