
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Bernd Hamann, Issac J. Trotts, Gerald E. Farin, "On Approximating Contours of the Piecewise Trilinear Interpolant Using Triangular RationalQuadratic Bézier Patches," IEEE Transactions on Visualization and Computer Graphics, vol. 3, no. 3, pp. 215227, JulySeptember, 1997.  
BibTex  x  
@article{ 10.1109/2945.620489, author = {Bernd Hamann and Issac J. Trotts and Gerald E. Farin}, title = {On Approximating Contours of the Piecewise Trilinear Interpolant Using Triangular RationalQuadratic Bézier Patches}, journal ={IEEE Transactions on Visualization and Computer Graphics}, volume = {3}, number = {3}, issn = {10772626}, year = {1997}, pages = {215227}, doi = {http://doi.ieeecomputersociety.org/10.1109/2945.620489}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Visualization and Computer Graphics TI  On Approximating Contours of the Piecewise Trilinear Interpolant Using Triangular RationalQuadratic Bézier Patches IS  3 SN  10772626 SP215 EP227 EPD  215227 A1  Bernd Hamann, A1  Issac J. Trotts, A1  Gerald E. Farin, PY  1997 KW  Approximation KW  contour KW  isosurface KW  marching cubes KW  rational Bézier curve KW  rational Bézier surface KW  triangular patch KW  triangulation KW  trilinear interpolation KW  visualization. VL  3 JA  IEEE Transactions on Visualization and Computer Graphics ER   
Abstract—Given a threedimensional (3D) array of function values
[1] C.L. Bajaj, J. Chen, and G. Xu, "Modeling with Cubic APatches," ACM Trans. Graphics, vol. 14, no. 2, pp. 103133, 1995.
[2] W. Boehm and D.C. Hansford, "Bézier Patches on Quadrics," NURBS for Curve and Surface Design, G. Farin, ed., pp. 114.Philadelphia, Penn: SIAM, 1991.
[3] W. Boehm and D.C. Hansford, "Parametric Representation of Quadric Surfaces, Modélisation Mathématique et Analysis Numérique, vol. 26, pp. 191200, 1991.
[4] W. Boehm and H. Prautzsch, Geometric Concepts for Geometric Design.Wellesley, Mass: A.K. Peters, Ltd., 1994.
[5] B. K. Choi, H.Y. Shin, Y.I. Yoon, and J.W. Lee, "Triangulation of Scattered Data in 3D Space," ComputerAided Design, vol. 20, pp. 239248, 1988.
[6] J.H. Chuang and C.M. Hoffmann, "Curvature Computations on Surfaces in nSpace," Technical Report #90.2, The Leonardo Fibonacci Inst. for the Foundations of Computer Science, Trento, Italy, 1990.
[7] J.H. Chuang and C.M. Hoffmann, "Curvature Computations on Surfaces in nSpace," Modélisation Mathématique et Analysis Numérique, vol. 26, pp. 95112, 1992.
[8] W. Dahmen, "Smooth Piecewise Quadric Surfaces," Mathematical Methods in Computer Aided Geometric Design, T. Lyche, and L.L. Schumaker, eds., pp. 181193.Boston: Academic Press, 1989.
[9] G.E. Farin, “Triangular BernsteinBézier Patches,” Computer Aided Geometric Design, pp. 83127, Mar. 1986.
[10] G. Farin, NURB Curves and Surfaces.Wellesley, Mass.: A.K. Peters, Ltd., 1995.
[11] G. Farin, Curves and Surfaces for CAGD, 4th ed. Boston: Academic Press, 1997.
[12] C.M. Grimm and J.F. Hughes, Smooth Isosurface Approximation, B. Wyvill, and M.P. Gascuel, eds. Implicit Surfaces '95, Eurographics workshop, pp. 5776.U.K.: Blackwell Publishers, 1995.
[13] B. Hamann, "Modeling Contours of Trivariate Data, Modélisation Mathématique et Analysis Numérique, vol. 26, pp. 5175, 1992.
[14] B. Hamann, "A Data Reduction Scheme for Triangulated Surfaces," Computer Aided Geometric Design, vol. 11, no. 2, pp. 197214 1994.
[15] B. Hamann, G. Farin, and G.M. Nielson, "A Parametric Triangular Patch Based on Generalized Conics," NURBS for Curve and Surface Design, G. Farin, ed., pp. 7585.Philadelphia, Penn.: SIAM, 1991.
[16] D.C. Hansford, "Boundary Curves with Quadric Precision for a Tangent Continuous Scattered Data Interpolant," PhD dissertation, Arizona State Univ., Tempe, AZ, 1991.
[17] D.C. Hansford, R.E. Barnhill, and G. Farin, "Curves with Quadric Boundary Precision," Computer Aided Geometric Design, vol. 11, pp. 519531, 1994.
[18] C.L. Lawson, "Software for C1Surface Interpolation," Mathematical Software III, J.R. Rice, ed., pp. 161194.San Diego, Calif: Academic Press, 1977.
[19] W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics (SIGGRAPH '87 Proc.), vol. 21, pp. 163169, 1987.
[20] J. Niebuhr, "BPatches on Quadrics (in German)," PhD dissertation, Technische Universität Braunschweig, Germany, 1991.
[21] G.M. Nielson and B. Hamann, The Asymptotic Decider: Removing the Ambiguity in Marching Cubes Proc. Visualization '91, pp. 8391, 1991.
[22] L. Piegl and W. Tiller, The NURBS Book.New York: SpringerVerlag, 1995.
[23] T. Schreiber, "Arithmetische Operationen auf Bézierflächen," Internal Report 224/92, Fachbereich Informatik, Technische Universität Kaiserslautern, Germany, 1992.
[24] L.L. Schumaker, "Computing Optimal Triangulations Using Simulated Annealing," Computer Aided Geometric Design, vol. 10, pp. 329345, 1993.
[25] T.W. Sederberg, "Piecewise Algebraic Surface Patches," Computer Aided Geometric Design, vol. 2, nos. 13, pp. 5359, 1985.