The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - July-September (1997 vol.3)
pp: 215-227
ABSTRACT
<p><b>Abstract</b>—Given a three-dimensional (3D) array of function values <it>F</it><sub><it>i</it>, <it>j</it>,<it>k</it></sub> on a rectilinear grid, the marching cubes (MC) method is the most common technique used for computing a surface triangulation <tmath>${\cal T}$</tmath> approximating a contour (isosurface) <it>F</it>(<it>x</it>, <it>y</it>, <it>z</it>) = <it>T</it>. We describe the construction of a <it>C</it><super>0</super>-continuous surface consisting of rational-quadratic surface patches interpolating the triangles in <tmath>${\cal T}.$</tmath> We determine the Bézier control points of a single rational-quadratic surface patch based on the coordinates of the vertices of the underlying triangle and the gradients and Hessians associated with the vertices.</p>
INDEX TERMS
Approximation, contour, isosurface, marching cubes, rational Bézier curve, rational Bézier surface, triangular patch, triangulation, trilinear interpolation, visualization.
CITATION
Issac J. Trotts, Gerald E. Farin, "On Approximating Contours of the Piecewise Trilinear Interpolant Using Triangular Rational-Quadratic Bézier Patches", IEEE Transactions on Visualization & Computer Graphics, vol.3, no. 3, pp. 215-227, July-September 1997, doi:10.1109/2945.620489
14 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool