This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Digital Brain Atlas for Surgical Planning, Model-Driven Segmentation, and Teaching
September 1996 (vol. 2 no. 3)
pp. 232-241

Abstract—We developed a three-dimensional (3D) digitized atlas of the human brain to visualize spatially complex structures. It was designed for use with magnetic resonance (MR) imaging data sets. Thus far, we have used this atlas for surgical planning, model-driven segmentation, and teaching. We used a combination of automated and supervised segmentation methods to define regions of interest based on neuroanatomical knowledge. We also used 3D surface rendering techniques to create a brain atlas that would allow us to visualize complex 3D brain structures. We further linked this information to script files in order to preserve both spatial information and neuroanatomical knowledge. We present here the application of the atlas for visualization in surgical planning for model-driven segmentation and for the teaching of neuroanatomy. This digitized human brain has the potential to provide important reference information for the planning of surgical procedures. It can also serve as a powerful teaching tool, since spatial relationships among neuroanatomical structures can be more readily envisioned when the user is able to view and rotate the structures in 3D space. Moreover, each element of the brain atlas is associated with a name tag, displayed by a user-controlled pointer. The atlas holds a major promise as a template for model-driven segmentation. Using this technique, many regions of interest can be characterized simultaneously on new brain images.

[1] R. Bajscy and S. Kovacic, "Multiresolution Elastic Matching," Computer Vision, Graphics&Image Processing, vol. 46, no. 1, pp. 1-21, 1989.
[2] M. Bomans, H.K. Höhne, G. Laub, A. Pommert, and U. Tiede, "Improvement of 3D Acquisition and Visualization in MRI," Magnetic Resonation Imaging, vol. 9 pp. 597-609, 1991.
[3] M.E. Brummer, R.M. Merserau, R.L. Eisner, and R.R.J. Lewine, "Automatic Detection of Brain Contours in MRI Data Sets," Proc. IPMI '91, Conf. Information Processing in Medical Imaging, A.C.F. Colchester and D.J. Hawkes, eds., vol. 511of Lecture Notes in Computer Science. Berlin: Springer-Verlag, pp. 188-204, 1991.
[4] G.E. Christensen, M.I. Miller, and M. Vannier, "A 3D Deformable Magnetic Resonance Textbook Based on Elasticity," Proc. AAAI Workshop: Application of Computer Vision in Medical Image Processing, Stanford Univ., pp. 153-156, 1994.
[5] H.E. Cline, C.L. Dumoulin, H.R. Hart, W.E. Lorensen, and S. Ludke, "3D Reconstruction of the Brain from Magnetic Resonance Images Using a Connectivity Algorithm," Magnetic Resonation Imaging, vol. 5, pp. 345-352, 1987.
[6] H.E. Cline, W.E. Lorensen, S. Ludke, C.R. Crawford, and B.C. Teeter, "Two Algorithms for the Three-Dimensional Reconstruction of Tomograms," Medical Physiology, vol. 15, pp. 320-327, 1988.
[7] H.E. Cline, W.E. Lorensen, R. Kikinis, and F.A. Jolesz, "Three-Dimensional Segmentation of MR Images of the Head Using Probability and Connectivity," J. Computer-Assisted Tomograms, vol. 14, pp. 1,037-1,045, 1990.
[8] H.E. Cline, W.E. Lorensen, S.P. Souza, F.A. Jolesz, R. Kikinis, G. Gerig, and T.E. Kennedy, "3D Surface Rendering: MR Images of the Brain and its Vasculature," J. Computer-Assisted Tomograms, vol. 15, pp. 344-355, 1991.
[9] D.L. Collins, T.M. Peters, W. Dai, and A.C. Evans, "Model Based Segmentation of Individual Brain Structures from MRI Data," Proc. SPIE 1808, Visualization in Biomedical Computing II, R.A. Robb, ed., Chapel Hill, N.C., pp. 10-23, 1992.
[10] E.C. Crosby, T. Humphrey, and E.W. Lauer, Correlative Anatomy of the Nervous System.New York: McMillan, 1962.
[11] A. Evans, S. Marret, J. Torrescorzo, S. Ku, and L. Collins, "MRI-PET Correlation in Three Dimensions Using a Volume-of-Interest (VOI) Atlas," J. Cerebral Blood Flow Metabolics, vol. 11, pp. A69-A78, 1991.
[12] J.C. Gee, M. Reivich, and R. Bajcsy, "Elastically Deforming 3D Atlas to Match Anatomical Brain Images," J. Computer-Assisted Tomograms, vol. 17, pp. 225-236, 1993.
[13] G. Gerig, W. Kuoni, R. Kikinis, and O. Kubler, "Medical Imaging and Computer Vision: An Integrated Approach for Diagnosis and Planning," Proc. II, DAGM Symp. Computer Vision,Hamburg, 1989.
[14] G. Gerig, O. Kubler, R. Kikinis, and F.A. Jolesz, “Nonlinear Anisotropic Filtering of MRI Data,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, pp. 221-232, 1992.
[15] T. Greitz, C. Bohm, S. Holte, and L. Eriksson, "A Computerized Brain Atlas: Construction, Anatomical Content, and Some Applications," J. Computer-Assisted Tomograms, vol. 15, pp. 26-38, 1991.
[16] U. Grenander and M.I. Miller, "Representation of Knowledge in Complex Systems," J. Royal Statistical Soc., vol. B56, no. 3, 1994.
[17] J.W. Haller, G.E. Christensen, M.I. Miller, M. Gado, D.W. McKeel Jr, J.G. Csernansky, and M.W. Vannier, "A Comparison of Automated and Manual Segmentation of Hippocampus MR Images," Proc. SPIE Conf. Medical Imaging,San Diego, Calif., Feb. 1995.
[18] G.T. Hermann and H.K. Liu, "Dynamic Boundary Surface Detection," Computer Graphics Image Process, vol. 9, pp. 130-138, 1979.
[19] K.H. Höhne, M. Bomans, A. Pommert, M. Riemer, C. Schiers, U. Tiede, and G. Wiebecke, "3D-Visualization of Tomographic Volume Data Using the Generalized Voxel-Model," Visual Computing, vol. 6, pp. 28-36, 1990.
[20] K.H. Höhne, M. Bomans, M. Riemer, R. Schubert, U. Tiede, W. Lierse, "A 3D Anatomical Atlas Based on a Volume Model," IEEE Computer and Graphics Applications, vol. 12, pp. 72-78, 1992.
[21] K.H. Höhne, A. Pommert, M. Riemer, T. Schiemann, R. Schubert, U. Tiede, and W. Lierse, "Framework for the Generation of 3D Anatomical Atlases," Proc. SPIE 1808, Visualization Biomedical Computing II, R.A. Robb, ed., Chapel Hill, N.C., pp. 510-520, 1992.
[22] K.H. Höhne, R.L. DeLaPa, R. Bernstein, and R.C. Taylor, "Combined Surface Display and Reformatting for the 3D-Analysis of Tomographic Data," Investigative Radiology, vol. 22, pp. 658-664, 1987.
[23] H. Hokama, M.E. Shenton, P.G. Nestor, R. Kikinis, J.J. Levitt, D. Metcalf, C.G. Wible, B.F. O'Donnell, F.A. Jolesz, and R.W. McCarley, "Caudate, Putamen, and Globus Pallidus Volume in Schizophrenia: A Quantitative MRI Study," Psychiatry Research: Neuroimaging, vol. 61, pp. 209-229, 1995.
[24] D.V. Iosifescu, M.E. Shenton, R. Kikinis, S.K. Warfield, and R.W. McCarley, "Elastically Matching an MR Brain Atlas onto a New MR Image of the Brain," Proc. 81st Scientific Assembly and Ann. Meeting, Radiological Soc, of North Am., p. 293, 1995.
[25] R. Kikinis, M.E. Shenton, F.A. Jolesz, G. Gerig, J. Martin, M. Anderson, D. Metcalf, C. Guttman, R.W. McCarley, W.E. Lorensen, and H.E. Cline, "Routine Quantitative Analysis of Brain and Cerebrospinal Fluid Spaces with MR Imaging," J. Magnetic Resonation Imaging, vol. 2, pp. 619-629, 1992.
[26] R. Kikinis, G. Langham, T.M. Moriarty, M.R. Moore, E. Alexander, M. Matsumae, W.E. Lorensen, P.M. Black, and F.A. Jolesz, "Computer-Assisted Interactive Three-Dimensional Planning for Neurosurgical Procedures," Neurosurgery, vol. 38, no. 4, pp. 640-651, 1996.
[27] R. Kikinis, "3D Warping of Digital Anatomical Atlas into Patient's Data Sets," Proc. Soc. Magnetic Resonance,Dallas, 1995.
[28] E.D. Lehmann, D.J. Hawkes, D.L. Hill, C.F. Bird, G.P. Robinson, A.C. Colchester, and M.N. Maisey, "Computer-Aided Interpretation of SPECT Images of the Brain Using an MRI-Derived 3D Neuroanatomical Atlas," Medical Informatics, vol. 16, pp. 151-166, 1991.
[29] W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface Construction Algorithm,” Computer Graphics (SIGGRAPH '87 Proc.), vol. 21, pp. 163-169, 1987.
[30] I. Mano, Y. Suto, M. Suzuki, and M. Iio, "Computerized Three-Dimensional Normal Atlas," Radiatric Medical, vol. 8, pp. 50-54, 1990.
[31] P. Perona and J. Malik, "Scale Space and Edge Detection Using Anisotropic Diffusion," Proc. IEEE Workshop Computer Vision, pp. 16-22, 1987.
[32] A. Pommert, R. Schubert, M. Riemer, T. Schiemann, U. Tiede, and K.H. Höhne, "Symbolic Modeling of Human Anatomy for Visualization and Simulation," Visualization in Biomedical Computing, vol. 2,359, pp. 412-423, 1994.
[33] J. Radamacher, A.M. Galaburda, D.N. Kennedy, and P.A. Filipek, "Caviness VSJ. Human Cerebral Cortex: Localization, Parcellation and Morphometry with Magnetic Resonance Imaging," J. Cognitive Neuroscience, vol. 4, pp. 352-374, 1992.
[34] T. Schiemann, K.H. Höhne, C. Koch, A. Pommert, M. Riemer, R. Schubert, and U. Tiede, "Interpretation of Tomographic Images Using Automatic Atlas Lookup," Visualization Biomedical Computing, vol. 2,359, pp. 457-465, 1994.
[35] W. Schroeder, W. Lorensen, G. Montanaro, and C. Volpe, "Visage: An Object-Oriented Scientific Visualization System," Proc. Visualization '92," pp. 219-226, IEEE Press, Oct. 1992.
[36] W.J. Schroeder, J.A. Zarge, and W.E. Lorensen, “Decimation of Triangle Meshes,” Proc. SIGGRAPH '92, pp. 65-70, 1992.
[37] M.E. Shenton, R. Kikinis, R.W. McCarley, D. Metcalf, J. Tieman, and F.A. Jolesz, "Application of Automated MRI Volumetric Measurement Techniques to the Ventricular System in Schizophrenics and Normal Controls," Schizophrenia Resonation, vol. 5, pp. 103-113, 1991.
[38] M.E. Shenton, R. Kikinis, F.A. Jolesz, S.D. Pollak, M. LeMay, C.G. Wible, H.H. Hokama, J. Martin, D. Metcalf, M. Coleman, and R.W. McCarley, "Abnormalities of the Left Temporal Lobe and Thought Disorder in Schizophrenia: A Quantitative Magnetic Resonance Imaging Study," New England J. Medicine, vol. 327, pp. 604-612, 1992.
[39] G. Subsol, J. Thirion, and N. Ayach, "Steps Towards Automatic Building ofAnatomical Atlases," Visualization in Biomedical Computing, vol. 2,359, pp. 435-446, 1994.
[40] J.W. Sundsten, K.G. Kastella, and D.M. Conley, "Videodisc Animation of 3D Computer Reconstructions of the Human Brain," J. Biomedical Comm., vol. 18, pp. 45-49, 1991.
[41] P.M. Thompson, C. Schwartz, R.T. Lin, A.A. Khan, A.W. Toga, and R.C. Collins, "3D Statistical Analysis of Sulcal Variability in the Human Brain Using High-Resolution Cryosection Images," Neuroscientific Abstracts, vol. 1, p. 154, 1995.
[42] U. Tiede, M. Bomans, K.H. Höhne, A. Pommert, M. Riemer, T. Schiemann, R. Schubert, and W. Lierse, "A Computerized Three-Dimensional Atlas of the Human Skull and Brain," Am. J. Neuroradiology, vol. 14, pp. 551-559, 1993.
[43] G. Taubin, "A Signal Processing Approach to Fair Surface Design," Computer Graphics Proc., Ann. Conf. Series, ACM Siggraph, ACM Press, New York, 1995, pp.351-358.
[44] M.W. Vannier, M.H. Gado, and J.L. Marsh, "Three-Dimensional Display of Intracranial Soft Tissue Structures," Am. J. Neuroradiology, vol. 4, pp. 520-521, 1983.
[45] S. Warfield, J. Dengler, J. Zaers, C.R.G. Guttmann, W.M. Wells, G.J. Ettinger, J. Hiller, and R. Kikinis, "Automatic Identification of Gray Matter Structures from MRI to Improve the Segmentation of White Matter Lesions," Proc. Medical Robotics and Computer-Assisted Surgery (MRCAS), pp. 55-62, Nov.4-7, 1995.
[46] C.G. Wible, M.E. Shenton, H.H. Hokama, R. Kikinis, F.A. Jolesz, D. Metcalf, and R.W. McCarley, "Prefrontal Cortex, Positive Symptoms, and Schizophrenia: A Quantitative MRI Study," Archectectural General Psychiatry, vol. 52, no. 4, pp. 279-288, 1995.

Index Terms:
Brain atlas, magnetic resonance imaging (MRI), 3D visualization, 3D surface rendering, biomedical visualization.
Citation:
Ron Kikinis, Martha E. Shenton, Dan V. Iosifescu, Robert W. McCarley, Pairash Saiviroonporn, Hiroto H. Hokama, Andre Robatino, David Metcalf, Cynthia G. Wible, Chiara M. Portas, Robert M. Donnino, Ferenc A. Jolesz, "A Digital Brain Atlas for Surgical Planning, Model-Driven Segmentation, and Teaching," IEEE Transactions on Visualization and Computer Graphics, vol. 2, no. 3, pp. 232-241, Sept. 1996, doi:10.1109/2945.537306
Usage of this product signifies your acceptance of the Terms of Use.