This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
On Particle Path Generation Based on Quadrilinear Interpolation and Bernstein-Bézier Polynomials
September 1995 (vol. 1 no. 3)
pp. 210-217

Abstract—Particle path computation in unsteady 3D vector fields given in discrete, structured form (i.e., as a hexahedral curvilinear grid) requires the local approximation of the vector field and the path. Quadrilinear interpolation and Bernstein-Bézier polynomials are used for the local vector field and path approximation. The next point in a sequence of points on a particle path is computed using this local approximation. Bernstein-Bézier polynomials are primarily used in geometric modeling, and their properties allow direct computation of points on a particle path.

[1] W. Boehm and H. Prautzsch,Numerical Methods.Wellesley, Mass.: AK Peters, Ltd., 1994.
[2] D. Darmofal and R. Haimes,“Visualization of 3-D vector fields: Variations on a stream,” AIAA paper 920074, Proc. 30th Aerospace Sciences Meeting and Exhibit,Reno, Nev., 1992.
[3] G. Farin,Curves and Surfaces for Computer Aided Geometric Design. 3rd ed., San Diego, Calif.: Academic Press, 1993.
[4] H. Hagen, H., Müller,, and G.M. Nielson,Focus on Scientific Visualization.New York: Springer-Verlag, 1993.
[5] A.J.S. Hin and F.H. Post,“Visualization of turbulent flow with particles,” G.M. Nielson and D. Bergeron, eds., Visualization ’93,Los Alamitos, Calif.: IEEE CS Press, pp. 4651, 1993.
[6] J. Hoschek and D. Lasser,Fundamentals of Computer Aided Geometric Design.Wellesley, Mass.: AK Peters, Ltd., 1993.
[7] J.P.M. Hultquist,“Interactive numerical flow visualization using stream surfaces,” PhD dissertation, Univ. of North Carolina, Chapel Hill, N.C., 1995.
[8] J.P.M. Hultquist,“Constructing stream surfaces in steady 3D vector fields,” A.E. Kaufman and G.M. Nielson, eds., Visualization ’92,Los Alamitos, Calif.: IEEE CS Press, pp. 171178, 1992.
[9] D.N. Kenwright and G.D. Mallinson,“A 3-D streamline tracking algorithm using dual stream functions,” A.E. Kaufman and G.M. Nielson, eds., Visualization ’92,Los Alamitos, Calif.: IEEE CS Press, pp. 6268, 1992.
[10] D.A. Lane,“Visualization of time-dependent flow fields,” G.M. Nielson and D. Bergeron, eds., Visualization ’93,Los Alamitos, Calif.: IEEE CS Press, pp. 3238, 1993.
[11] W.C. de Leeuw and J.J. van Wijk,“A probe for local flow field visualization,” G.M. Nielson and D. Bergeron, eds., Visualization ’93,Los Alamitos, Calif.: IEEE CS Press, pp. 3945, 1993.
[12] K.L. Ma and P.J. Smith,“Cloud tracing in convectiondiffusion systems,” G.M. Nielson and D. Bergeron, eds., Visualization ’93,Los Alamitos, Calif.: IEEE CS Press, pp. 253259, 1993.
[13] F.H. Post and T. van Walsum,“Fluid flow visualization,” H. Hagen, H. Müller, and G.M. Nielson, eds., Focus on Scientific Visualization.New York: Springer-Verlag, pp. 140, 1993.
[14] A. Sadarjoen,T. van Walsum,A. Hin,, and F. Post,“Particle tracing algorithms for 3-D curvilinear grids,” Proc. Fifth Eurographics Workshop on Visualization in Scientific Computing,Rostock, Germany, 1994.
[15] T. Schreiber,“Arithmetische operationen auf bézierflächen,” Internal Report 224/92, Fachbereich Informatik, Technische Universität Kaiserslautern, Germany, 1992.
[16] S. Shirayama,“Visualization of vector fields in flow analysis,” AIAA paper 910801, Proc. 29th Aerospace Sciences Meeting and Exhibit,Reno, Nev., 1991.
[17] J.F. Thompson,Z.U.A. Warsi,, and C.W. Mastin,Numerical Grid Generation.New York: North-Holland, 1985.
[18] J.F. Thompson and N.P. Weatherill,“Aspects of numerical grid generation: Current science and art,” Proc. 11th AIAA Applied Aerodynamics Conf.,Monterey, Calif., 1993.
[19] J.J. van Wijk,“Implicit stream surfaces,” G.M. Nielson and D. Bergeron, eds., Visualization ’93,Los Alamitos, Calif.: IEEE CS Press, pp. 245252, 1993.
[20] P. Yeung, and S. Pope,“An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence,” J. Computational Physics 79, 1988.

Index Terms:
Approximation, Bernstein-Bézier polynomial, particle path, curvilinear grid, path line, scientific visualization, structured grid, trajectory, vector field.
Citation:
Bernd Hamann, Donghua Wu, Robert J. Moorhead II, "On Particle Path Generation Based on Quadrilinear Interpolation and Bernstein-Bézier Polynomials," IEEE Transactions on Visualization and Computer Graphics, vol. 1, no. 3, pp. 210-217, Sept. 1995, doi:10.1109/2945.466716
Usage of this product signifies your acceptance of the Terms of Use.