This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Scalable Hypergrid k-NN-Based Online Anomaly Detection in Wireless Sensor Networks
Aug. 2013 (vol. 24 no. 8)
pp. 1661-1670
Miao Xie, Curtin University, Perth
Jiankun Hu, University of New South Wales at the Australian Defence Force Academy, Canberra
Song Han, Curtin University, Perth
Hsiao-Hwa Chen, National Cheng Kung University, Tainan City
Online anomaly detection (AD) is an important technique for monitoring wireless sensor networks (WSNs), which protects WSNs from cyberattacks and random faults. As a scalable and parameter-free unsupervised AD technique, $(k)$-nearest neighbor (kNN) algorithm has attracted a lot of attention for its applications in computer networks and WSNs. However, the nature of lazy-learning makes the kNN-based AD schemes difficult to be used in an online manner, especially when communication cost is constrained. In this paper, a new kNN-based AD scheme based on hypergrid intuition is proposed for WSN applications to overcome the lazy-learning problem. Through redefining anomaly from a hypersphere detection region (DR) to a hypercube DR, the computational complexity is reduced significantly. At the same time, an attached coefficient is used to convert a hypergrid structure into a positive coordinate space in order to retain the redundancy for online update and tailor for bit operation. In addition, distributed computing is taken into account, and position of the hypercube is encoded by a few bits only using the bit operation. As a result, the new scheme is able to work successfully in any environment without human interventions. Finally, the experiments with a real WSN data set demonstrate that the proposed scheme is effective and robust.
Index Terms:
Wireless sensor networks,Training data,Monitoring,Real time systems,Detectors,Encoding,Complexity theory,distributed computing,Wireless sensor networks,Training data,Monitoring,Real time systems,Detectors,Encoding,Complexity theory,parameter selection,Wireless sensor network,k-nearest neighbor,anomaly detection
Citation:
Miao Xie, Jiankun Hu, Song Han, Hsiao-Hwa Chen, "Scalable Hypergrid k-NN-Based Online Anomaly Detection in Wireless Sensor Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 8, pp. 1661-1670, Aug. 2013, doi:10.1109/TPDS.2012.261
Usage of this product signifies your acceptance of the Terms of Use.