This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Hamiltonian Decomposition of the Rectangular Twisted Torus
Aug. 2012 (vol. 23 no. 8)
pp. 1504-1507
Pranava K. Jha, St. Cloud State University, St. Cloud
Rachna Prasad, St. Cloud State University, St. Cloud
We show that the 2a\times a rectangular twisted torus introduced by Cámara et al. [5] is edge decomposable into two Hamiltonian cycles. In the process, the 2a × a × a prismatic twisted torus is edge decomposable into three Hamiltonian cycles, and the 2a × a × a prismatic doubly twisted torus admits two edge-disjoint Hamiltonian cycles.

[1] J. Aubert and B. Schneider, "Décompositions de la somme Cartésienne d'un Cycle et l'union de 2 Cycles Hamiltoniens," Discrete Math., vol. 38, no. 1, pp. 7-16, 1982.
[2] R. Beivide, E. Herrada, J.L. Balcazar, and J. Labarta, "Optimized Mesh-Connected Networks for SIMD and MIMD Architectures," Proc. 14th Ann. Int'l Symp. Computer Architecture, pp. 163-169, 1987.
[3] J. Bosák, Decompositions of Graphs. Kluwer Acad. Publishing, 1990.
[4] W.J. Bouknight, S.A. Denenberg, D.E. McIntyre, J.M. Randall, A.H. Sameh, and D.L. Slotnick, "The Illiac IV System," Proc. IEEE, vol. 60, no. 4, pp. 369-388, Apr. 1972.
[5] J.M. Cámara, M. Moretó, E. Vallejo, R. Beivide, J. Miguel-Alonso, C. Martínez, and J. Navaridas, "Twisted Torus Topologies for Enhanced Interconnection Networks," IEEE Trans. Parallel and Distributed Systems, vol. 21, no. 12, pp. 1765-1778, Dec. 2010.
[6] Z. Cvetanovic, "Performance Analysis of the Alpha 21364-Based HP GS1280 Multiprocessor," Proc. 30th Ann. Int'l Symp. Computer Architecture, pp. 218-228, 2003.
[7] W.J. Dally and B. Towles, Principles and Practices of Interconnection Networks. Morgan Kaufmann, 2004.
[8] R. Hammack, W. Imrich, and S. Klavžar, Handbook of Product Graphs, second ed. CRC Press, 2011.
[9] M.C. Heydemann, "Cayley Graphs and Interconnection Networks," Graph Symmetry, G. Hahn and G. Sabidussi eds., pp. 167-224, Kluwer Academic Publishing, 1997.
[10] R.-W. Hung, "Embedding of Two Edge-Disjoint Hamiltonian Cycles into Locally Twisted Cubes," Theoretical Computer Science, vol. 412, no. 35, pp. 4747-4753, Aug. 2011.
[11] A.J. Martin, "The TORUS: An Exercise in Constructing a Processing Surface," Proc. Caltech VLSI Conf., 1981.
[12] C.H. Sequin, "Doubly Twisted Torus Networks for VLSI Processor Arrays," Proc. Eighth Ann. Int'l Symp. Computer Architecture, pp. 471-480, 1981.
[13] L. Stacho, J. Širáň, and S. Zhou, "Routing Balanced Communications on Hamiltonian Decomposable Networks," Parallel Processing Letters, vol. 14, nos. 3/4, pp. 377-385, 2004.
[14] X. Yang, D.J. Evans, and G.M. Megson, "The Locally Twisted Cubes," Int'l J. Computer Math., vol. 82, no. 4, pp. 401-413, 2005.
[15] Y. Yang, A. Funahashi, A. Jouraku, H. Nishi, H. Amano, and T. Sueyoshi, "Recursive Diagonal Torus: An Interconnection Network for Massively Parallel Computers," IEEE Trans. Parallel Distributed Systems, vol. 12, no. 7, pp. 701-715, July 2001.

Index Terms:
Graphs and networks, rectangular twisted torus, Hamiltonian decomposition, multiprocessor interconnection, fault tolerance.
Citation:
Pranava K. Jha, Rachna Prasad, "Hamiltonian Decomposition of the Rectangular Twisted Torus," IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 8, pp. 1504-1507, Aug. 2012, doi:10.1109/TPDS.2011.288
Usage of this product signifies your acceptance of the Terms of Use.