The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.08 - Aug. (2012 vol.23)
pp: 1504-1507
Pranava K. Jha , St. Cloud State University, St. Cloud
Rachna Prasad , St. Cloud State University, St. Cloud
ABSTRACT
We show that the 2a\times a rectangular twisted torus introduced by Cámara et al. [5] is edge decomposable into two Hamiltonian cycles. In the process, the 2a ? a ? a prismatic twisted torus is edge decomposable into three Hamiltonian cycles, and the 2a ? a ? a prismatic doubly twisted torus admits two edge-disjoint Hamiltonian cycles.
INDEX TERMS
Graphs and networks, rectangular twisted torus, Hamiltonian decomposition, multiprocessor interconnection, fault tolerance.
CITATION
Pranava K. Jha, Rachna Prasad, "Hamiltonian Decomposition of the Rectangular Twisted Torus", IEEE Transactions on Parallel & Distributed Systems, vol.23, no. 8, pp. 1504-1507, Aug. 2012, doi:10.1109/TPDS.2011.288
REFERENCES
[1] J. Aubert and B. Schneider, "Décompositions de la somme Cartésienne d'un Cycle et l'union de 2 Cycles Hamiltoniens," Discrete Math., vol. 38, no. 1, pp. 7-16, 1982.
[2] R. Beivide, E. Herrada, J.L. Balcazar, and J. Labarta, "Optimized Mesh-Connected Networks for SIMD and MIMD Architectures," Proc. 14th Ann. Int'l Symp. Computer Architecture, pp. 163-169, 1987.
[3] J. Bosák, Decompositions of Graphs. Kluwer Acad. Publishing, 1990.
[4] W.J. Bouknight, S.A. Denenberg, D.E. McIntyre, J.M. Randall, A.H. Sameh, and D.L. Slotnick, "The Illiac IV System," Proc. IEEE, vol. 60, no. 4, pp. 369-388, Apr. 1972.
[5] J.M. Cámara, M. Moretó, E. Vallejo, R. Beivide, J. Miguel-Alonso, C. Martínez, and J. Navaridas, "Twisted Torus Topologies for Enhanced Interconnection Networks," IEEE Trans. Parallel and Distributed Systems, vol. 21, no. 12, pp. 1765-1778, Dec. 2010.
[6] Z. Cvetanovic, "Performance Analysis of the Alpha 21364-Based HP GS1280 Multiprocessor," Proc. 30th Ann. Int'l Symp. Computer Architecture, pp. 218-228, 2003.
[7] W.J. Dally and B. Towles, Principles and Practices of Interconnection Networks. Morgan Kaufmann, 2004.
[8] R. Hammack, W. Imrich, and S. Klavžar, Handbook of Product Graphs, second ed. CRC Press, 2011.
[9] M.C. Heydemann, "Cayley Graphs and Interconnection Networks," Graph Symmetry, G. Hahn and G. Sabidussi eds., pp. 167-224, Kluwer Academic Publishing, 1997.
[10] R.-W. Hung, "Embedding of Two Edge-Disjoint Hamiltonian Cycles into Locally Twisted Cubes," Theoretical Computer Science, vol. 412, no. 35, pp. 4747-4753, Aug. 2011.
[11] A.J. Martin, "The TORUS: An Exercise in Constructing a Processing Surface," Proc. Caltech VLSI Conf., 1981.
[12] C.H. Sequin, "Doubly Twisted Torus Networks for VLSI Processor Arrays," Proc. Eighth Ann. Int'l Symp. Computer Architecture, pp. 471-480, 1981.
[13] L. Stacho, J. Širáň, and S. Zhou, "Routing Balanced Communications on Hamiltonian Decomposable Networks," Parallel Processing Letters, vol. 14, nos. 3/4, pp. 377-385, 2004.
[14] X. Yang, D.J. Evans, and G.M. Megson, "The Locally Twisted Cubes," Int'l J. Computer Math., vol. 82, no. 4, pp. 401-413, 2005.
[15] Y. Yang, A. Funahashi, A. Jouraku, H. Nishi, H. Amano, and T. Sueyoshi, "Recursive Diagonal Torus: An Interconnection Network for Massively Parallel Computers," IEEE Trans. Parallel Distributed Systems, vol. 12, no. 7, pp. 701-715, July 2001.
39 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool