
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
R. Guerrieri, T. De Marco, F. Ries, "Triangular Matrix Inversion on Heterogeneous Multicore Systems," IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 1, pp. 177184, January, 2012.  
BibTex  x  
@article{ 10.1109/TPDS.2011.103, author = {R. Guerrieri and T. De Marco and F. Ries}, title = {Triangular Matrix Inversion on Heterogeneous Multicore Systems}, journal ={IEEE Transactions on Parallel and Distributed Systems}, volume = {23}, number = {1}, issn = {10459219}, year = {2012}, pages = {177184}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.103}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Parallel and Distributed Systems TI  Triangular Matrix Inversion on Heterogeneous Multicore Systems IS  1 SN  10459219 SP177 EP184 EPD  177184 A1  R. Guerrieri, A1  T. De Marco, A1  F. Ries, PY  2012 KW  parallel processing KW  computer graphic equipment KW  coprocessors KW  linear algebra KW  matrix inversion KW  multiprocessing systems KW  heterogeneous dualGPU system KW  linear algebra algorithm KW  factorizationbased dense matrix inversion algorithm KW  parallel triangular matrix inversion KW  heterogeneous multicore CPU system KW  Graphics processing unit KW  Instruction sets KW  Kernel KW  Random access memory KW  Indexes KW  Parallel processing KW  Table lookup KW  parallel processing. KW  Matrix inversion VL  23 JA  IEEE Transactions on Parallel and Distributed Systems ER   
[1] N. Galoppo, N.K. Govindaraju, M. Henson, and D. Manocha, “LUGPU: Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware,” Proc. ACM/IEEE Conf. Supercomputing, p. 3, 2005.
[2] V. Volkov and J.W. Demmel, “Benchmarking GPUs to Tune Dense Linear Algebra,” Proc. ACM/IEEE Conf. Supercomputing, pp. 111, 2008.
[3] S. Barrachina, M. Castillo, F.D. Igual, R. Mayo, and E.S. QuintanaOrtí, “Solving Dense Linear Systems on Graphics Processors,” Proc. 14th Int'l EuroPar Conf. Parallel Processing, pp. 739748, 2008.
[4] S. Tomov, J. Dongarra, and M. Baboulin, “Towards Dense Linear Algebra for Hybrid GPU Accelerated Manycore Systems,” Parallel Computing Parallel Matrix Algorithms and Applications, vol. 36, nos. 5/6, pp. 232240, June 2010.
[5] H. Hallez, B. Vanrumste, R. Grech, J. Muscat, D. Clercq, A. Vergult, Y. D'Asseler, K.P. Camilleri, S.G. Fabri, S. Van Huffel, and I. Lemahieu, “Review on Solving the Forward Problem in EEG Source Analysis,” J. Neuroeng. and Rehabilitation, vol. 4, no. 46, 2007.
[6] R.E. Greenblatt, A. Ossadtchi, and M.E. Pflieger, “Local Linear Estimators for the Bioelectromagnetic Inverse Problem,” IEEE Trans. Signal Processing, vol. 53, no. 9, pp. 34033412, Sept. 2005.
[7] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty, Nonlinear Programming: Theory and Algorithms, third ed. Wiley, 2006.
[8] N. Harvey, D. Lun, and P. Maymounkov, “Methods for Efficient Network Coding,” Proc. 44th Allerton Ann. Conf. Comm., Control, and Computing, 2006.
[9] F. Ries, T. Marco, M. Zivieri, and R. Guerrieri, “Triangular Matrix Inversion on Graphics Processing Unit,” Proc. Conf. High Performance Computing Networking, Storage and Analysis, pp. 110, 2009.
[10] W. Nasri and Z. Mahjoub, “Optimal Parallelization of a Recursive Algorithm for Triangular Matrix Inversion on MIMD Computers,” Parallel Computing, vol. 27, no. 13, pp. 17671782, 2001.
[11] L. Weiguo, B. Schmidt, G. Voss, and W. MüllerWittig, “Streaming Algorithms for Biological Sequence Alignment on GPUs,” IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 9, pp. 12701281, Sept. 2007.
[12] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F. Tirado, “Parallel Implementation of the 2D Discrete Wavelet Transform on Graphics Processing Units: Filter Bank versus Lifting,” IEEE Trans. Parallel and Distributed Systems, vol. 19, no. 3, pp. 299310, Mar. 2008.
[13] NVIDIA Corporation, “NVIDIA CUDA Compute Unified Device Architecture,” Programming Guide, v. 2.2, 2008.
[14] D. Heller, “A Survey of Parallel Algorithms in Numerical Linear Algebra,” SIAM Rev., vol. 20, pp. 740777, 1978.
[15] Y. Robert, The Impact of Vector and Parallel Architectures on the Gaussian Elimination Algorithm. Halstead Press, 1990.
[16] V. Strassen, “Gaussian Elimination Is Not Optimal,” Numerical Math., vol. 13, pp. 354356, 1969.
[17] S.M. Balle, P.C. Hansen, and N. Higham, “A StrassenType Matrix Inversion Algorithm,” Advances in Parallel Algorithms, pp. 2230, IOS Press, 1994.
[18] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla: A Unified Graphics and Computing Architecture,” IEEE Micro, vol. 28, no. 2, pp. 3955, Mar./Apr. 2008.
[19] L. Dagum and R. Menon, “OpenMP: An Industry Standard API for SharedMemory Programming,” IEEE Computational Science and Eng., vol. 5, no. 1, pp. 4655, Jan.Mar. 1998.
[20] E. Anderson, Z. Bai, C. Bischof, L.S. Blackford, J. Demmel, J. Dongarra, J.D. Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen, LAPACK Users' Guide, third ed. SIAM, 1999.