
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Lawrence Murray, "GPU Acceleration of RungeKutta Integrators," IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 1, pp. 94101, January, 2012.  
BibTex  x  
@article{ 10.1109/TPDS.2011.61, author = {Lawrence Murray}, title = {GPU Acceleration of RungeKutta Integrators}, journal ={IEEE Transactions on Parallel and Distributed Systems}, volume = {23}, number = {1}, issn = {10459219}, year = {2012}, pages = {94101}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.61}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Parallel and Distributed Systems TI  GPU Acceleration of RungeKutta Integrators IS  1 SN  10459219 SP94 EP101 EPD  94101 A1  Lawrence Murray, PY  2012 KW  Ordinary differential equations KW  initial value problems KW  RungeKutta integration KW  graphics hardware KW  GPGPU. VL  23 JA  IEEE Transactions on Parallel and Distributed Systems ER   
[1] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips, “GPU Computing,” Proc. IEEE, vol. 96, no. 5, pp. 879899, May 2008.
[2] W. Liu, B. Schmidt, G. Voss, and W. MullerWittig, “Streaming Algorithms for Biological Sequence Alignment on GPUs,” IEEE Trans. Parallel and Distributed Systems, vol. 18, no. 9, pp. 12701281, Sept. 2007.
[3] T. Preis, P. Virnau, W. Paul, and J.J. Schneider, “GPU Accelerated Monte Carlo Simulation of the 2D and 3D Ising Model,” J. Computational Physics, vol. 228, pp. 44684477, 2009.
[4] R.B. Buxton, E.C. Wong, and L.R. Frank, “Dynamics of Blood Flow and Oxygenation Changes during Brain Activation: The Balloon Model,” Magnetic Resonance in Medicine, vol. 39, pp. 855864, 1998.
[5] J.B. Mandeville, J.J.A. Marot, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B.R. Rosen, and R.M. Weisskoff, “Evidence of a Cerebrovascular Postarteriole Windkessel with Delayed Compliance,” J. Cerebral Blood Flow and Metabolism, vol. 19, pp. 679689, 1999.
[6] A. Lotka, Elements of Physical Biology. Williams and Wilkins, 1925.
[7] V. Volterra, “Variations and Fluctuations of the Number of Individuals in Animal Species Living Together,” Animal Ecology, R.N. Chapman, ed., McGrawHill, 1931.
[8] G. Evans and J. Parslow, “A Model of Annual Plankton Cycles,” Biological Oceanography, vol. 3, pp. 327347, 1985.
[9] S. Gill, “A Process for the StepbyStep Integration of Differential Equations in an Automatic Digital Computing Machine,” Math. Proc. Cambridge Philosophical Soc., vol. 47, pp. 96108, 1951.
[10] “NVIDIA's Next Generation CUDA Compute Architecture: Fermi,” NVIDIA White Paper, 2009.
[11] CUDA Programming Guide Version 3.0, NVIDIA, 2010.
[12] E. Hairer, S. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, second ed., SpringerVerlag, 1993.
[13] J.R. Dormand and P.J. Prince, “A Family of Embedded RungeKutta Formulae,” J. Computational and Applied Math., vol. 6, pp. 1926, 1980.
[14] E. Fehlberg, “LowOrder Classical RungeKutta Formulas with Stepsize Control and Their Application to Some Heat Transfer Problems,” Technical Report R315, Nat'l Aeronautics and Space Administration, 1969.
[15] J. Williamson, “LowStorage RungeKutta Schemes,” J. Computational Physics, vol. 35, pp. 4856, 1980.
[16] P.J. van der Houwen, “Explicit RungeKutta Formulas with Increased Stability Boundaries,” Numerische Math., vol. 20, pp. 149164, 1972.
[17] C.A. Kennedy, M.H. Carpenter, and R.M. Lewis, “LowStorage, Explicit RungeKutta Schemes for the Compressible NavierStokes Equations,” Applied Numerical Math., vol. 35, pp. 177219, 2000.
[18] E.N. Lorenz, Predictability—A Problem Partly Solved, p. 118, Cambridge Univ. Press, 2006.
[19] T. Aila and S. Laine, “Understanding the Efficiency of Ray Traversal on GPUs,” Proc. HighPerformance Graphics, pp. 145149, 2009.