This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
On Bandwidth-Efficient Overlay Multicast
November 2007 (vol. 18 no. 11)
pp. 1503-1515
In this paper, we propose a new multicast delivery mechanism for bandwidth-demanding applications in IP networks. Our mechanism, referred to as Multiple- estination Overlay Multicast (MOM), combines the advantages of IP multicast and overlay multicast. We formulate the Multiple-destination Overlay Multicast routing problem as an optimization problem. We then design an algorithm based on Lagrangean relaxation on our formulation and propose a distributed protocol based on the algorithm. For network operators, MOM consumes less network bandwidth than both IP multicast and overlay multicast. For end users, MOM uses less interface bandwidth than overlay multicast.

[1] P.V. Mieghem, G. Hooghiemstra, and R. Hofstad, “On the Efficiency of Multicast,” IEEE/ACM Trans. Networking, vol. 9, no. 6, pp. 719-732, Dec. 2001.
[2] D. Waitzman, C. Partridge, and S. Deering, Distance Vector Multicast Routing Protocol, IETF RFC 1075, Nov. 1988.
[3] J. Moy, “Multicast Routing Extensions for OSPF,” Comm. ACM, vol. 37, no. 8, pp. 61-66, Aug. 1994.
[4] T. Ballardie, P. Francis, and J. Crowcroft, “Core-Based Trees (CBT),” ACM SIGCOMM Computer Comm. Rev., vol. 23, no. 4, pp.85-95, 1993.
[5] S. Deering et al., “The PIM Architecture for Wide-Area Multicast Routing,” IEEE/ACM Trans. Networking, vol. 4, no. 2, pp. 153-162, Apr. 1996.
[6] L. Aguilar, “Datagram Routing for Internet Multicasting,” Proc. ACM SIGCOMM '84, vol. 14, no. 2, pp.58-63, 1984.
[7] R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, and O. Paridaens, “Explicit Multicast (Xcast) Concepts and Options,” IETF internet draft, work in progress, Jan. 2007.
[8] C. Graff, IPv4 Option for Sender Directed Multi-Destination Delivery, IETF RFC 1770, 1995.
[9] L. Ji and M.S. Corson, “Explicit Multicasting for Mobile Ad Hoc Networks,” ACM Mobile Networks and Applications, vol. 8, no. 5, pp. 535-549, Oct. 2003.
[10] C. Gui and P. Mohapatra, “Scalable Multicasting in Mobile Ad Hoc Networks,” Proc. IEEE INFOCOM '04, vol. 3, pp. 2119-2129, 2004.
[11] D.-N. Yang and W. Liao, “Optimizing State Allocation for Multicast Communications,” Proc. IEEE INFOCOM '04, vol. 4, pp. 2719-2730, 2004.
[12] M.-K. Shin, K. Kim, D.-K. Kim, and S.-H. Kim, “Multicast Delivery Using Explicit Multicast over IPv6 Networks,” IEEE Comm. Letters, vol. 7, no. 2, pp. 91-93, Feb. 2003.
[13] Y.-H. Chu, S.G. Rao, S. Seshan, and H. Zhang, “A Case for End-System Multicast,” IEEE J. Selected Areas in Comm., vol. 20, no. 8, pp. 1456-1471, Oct. 2002.
[14] J. Liebeherr, M. Nahas, and W. Si, “Application-Layer Multicasting with Delaunay Triangulation Overlays,” IEEE J. Selected Areas in Comm., vol. 20, no. 8, pp. 1472-1488, Oct. 2002.
[15] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron, “Scribe: A Large-Scale and Decentralized Application-Level Multicast Infrastructure,” IEEE J. Selected Areas in Comm., vol. 20, no. 8, pp. 1489-1499, Oct. 2002.
[16] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable Application Layer Multicast,” Proc. ACM SIGCOMM '02, vol. 32, no. 4, pp. 205-217, 2002.
[17] M. Castro et al., “An Evaluation of Scalable Application-Level Multicast Built Using Peer-To-Peer Overlays,” Proc. IEEE INFOCOM '02, vol. 2, pp. 1510-1520, 2003.
[18] S.Y. Shi and J.S. Turner, “Multicast Routing and Bandwidth Dimensioning in Overlay Networks,” IEEE J. Selected Areas in Comm., vol. 20, no. 8, pp. 1444-1455, Oct. 2002.
[19] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S. Khuller, “Construction of an Efficient Overlay Multicast Infrastructure for Real-Time Applications,” Proc. IEEE INFOCOM '03, vol. 2, pp. 1521-1531, 2003.
[20] Y. Cui, Y. Xue, and K. Nahrstedt, “Optimal Resource Allocation in Overlay Multicast,” Proc. 11th IEEE Int'l Conf. Network Protocols (ICNP '03), pp. 71-81, 2003.
[21] E. Brosh and Y. Shavitt, “Approximation and Heuristic Algorithms for Minimum-Delay Application-Layer Multicast Trees,” Proc. IEEE INFOCOM '04, vol. 4, pp. 2697-2707, 2004.
[22] B.M. Waxman, “Routing of Multipoint Connections,” IEEE J.Selected Areas in Comm., vol. 6, no. 9, pp. 1617-1622, Dec. 1988.
[23] USC/ISI SCAN project, http://www.isi.edu/scanmbone.html, 1999.
[24] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger, “Network Topology Generators: Degree-Based vs. Structural,” Proc. ACM SIGCOMM '02, vol. 32, no. 4, pp. 147-159, 2002.
[25] Inet Topology Generator, http://topology.eecs.umich.eduinet/, 2002.
[26] E.W. Zegura, K.L. Calvert, and M.J. Donahoo, “A Quantitative Comparison of Graph-Based Models for Internet Topology,” IEEE/ACM Trans. Networking, vol. 5, no. 6, pp. 770-783, Dec. 1997.
[27] G. Phillips, S. Shenker, and H. Tangmunarunkit, “Scaling of Multicast Trees: Comments on the Chuang-Sirbu Scaling Law,” Proc. ACM SIGCOMM '99, vol. 29, no. 4, pp.41-51, 1999.
[28] CPLEX Optimization Package, http://www.ilog.com/productscplex/, 2007.
[29] D.-N. Yang, “Scalability in Xcast-Based Multicast,” PhD dissertation, Nat'l Taiwan Univ., 2004.

Index Terms:
application-layer multicast, overlay multicast
Citation:
De-Nian Yang, Wanjiun Liao, "On Bandwidth-Efficient Overlay Multicast," IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 11, pp. 1503-1515, Nov. 2007, doi:10.1109/TPDS.2007.1104
Usage of this product signifies your acceptance of the Terms of Use.