This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Runtime Optimization of IEEE 802.11 Wireless LANs Performance
January 2004 (vol. 15 no. 1)
pp. 66-80

Abstract—IEEE 802.11 is the standard for Wireless Local Area Networks (WLANs) promoted by the Institute of Electrical and Electronics Engineers. Wireless technologies in the LAN environment are becoming increasingly important and the IEEE 802.11 is the most mature technology to date. Previous works have pointed out that the standard protocol can be very inefficient and that an appropriate tuning of its congestion control mechanism (i.e., the backoff algorithm) can drive the IEEE 802.11 protocol close to its optimal behavior. To perform this tuning, a station must have exact knowledge of the network contention level; unfortunately, in a real case, a station cannot have exact knowledge of the network contention level (i.e., number of active stations and length of the message transmitted on the channel), but it, at most, can estimate it. This paper presents and evaluates a distributed mechanism for contention control in IEEE 802.11 Wireless LANs. Our mechanism, named Asymptotically Optimal Backoff (AOB), dynamically adapts the backoff window size to the current network contention level and guarantees that an IEEE 802.11 WLAN asymptotically achieves its optimal channel utilization. The AOB mechanism measures the network contention level by using two simple estimates: the slot utilization and the average size of transmitted frames. These estimates are simple and can be obtained by exploiting information that is already available in the standard protocol. AOB can be used to extend the standard 802.11 access mechanism without requiring any additional hardware. The performance of the IEEE 802.11 protocol, with and without the AOB mechanism, is investigated in the paper through simulation. Simulation results indicate that our mechanism is very effective, robust, and has traffic differentiation potentialities.

[1] I. Aad and C. Castelluccia, Differentiation Mechanisms for IEEE 802.11 Proc. IEEE INFOCOM, vol. 1, pp. 209-218, 2001.
[2] G. Anastasi and L. Lenzini, QoS Provided by the IEEE 802.11 Wireless LAN to Advanced Data Applications: A Simulation Analysis ACM Wireless Networks (WINET), vol. 6, no. 2, pp. 99-108, 2000.
[3] G. Anastasi, M. Conti, and E. Gregori, IEEE 802.11 Ad Hoc Networks: Protocols, Performance and Open Issues Mobile Ad Hoc Networking, S. Basagni, M. Conti, S. Giordano, and I. Stojmenovic, eds., New York: IEEE Press&John Wiley and Sons, Inc., 2003.
[4] V. Bharghavan, A.J. Demers, S. Shenker, and L. Zhang, MACAW: A Media Access Protocol for Wireless LAN's Proc. SIGCOMM Conf., pp. 212-225, 1994.
[5] G. Bianchi, L. Fratta, and M. Olivieri, “Performance Evaluation and Enhancement of the CSMA/CA MAC Protocol for 802.11 Wireless LANs,” Proc. Personal Indoor Mobile Radio Conf. (PIMRC), pp. 392-396, 1996.
[6] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE J, Selected Areas in Comm., vol. 18, no. 3, pp. 535-547, Mar. 2000.
[7] L. Bononi, M. Conti, and L. Donatiello, A Distributed Contention Control Mechanism for Power Saving in Random-Access Ad Hoc Wireless Local Area Networks Proc. Workshop Mobile Multimedia Comm., Nov. 1999.
[8] L. Bononi, M. Conti, and E. Gregori, “Design and Performance Evaluation of an Asymptotically Optimal Backoff Algorithm for IEEE 802.11 Wireless LANs,” Proc. Hawaii Int'l Conf. System Sciences (HICSS-33), 2000.
[9] L. Bononi, M. Conti, and L. Donatiello, Design and Performance Evaluation of a Distributed Contention Control (DCC) Mechanism for IEEE 802.11 Wireless Local Area Networks J. Parallel and Distributed Computing, vol. 60, no. 4, Apr. 2000.
[10] L. Bononi, M. Conti, and E. Gregori, Run-Time Optimization of IEEE 802.11 Wireless LANs Performance: Part I IIT internal report, July 2002.
[11] L. Bononi, M. Conti, and E. Gregori, Run-Time Optimization of IEEE 802.11 Wireless LANs Performance: Part II internal report,http://www.cs.unibo.it/~bononi/Publications tr_bon03.pdf, Feb. 2003.
[12] R. Bruno, M. Conti, and E. Gregori, WLAN Technologies for Mobile Ad Hoc Networks Proc. Hawaii Int'l Conf. System Sciences, Jan. 2001.
[13] R. Bruno, M. Conti, and E. Gregori, Traffic Integration in Personal, Local and Geograhical Wireless Networks Handbook of Wireless Networks and Mobile Computing, chapter 7, I. Stojmenovic, ed., New York: John Wiley&Sons, 2002.
[14] R. Bruno, M. Conti, and E. Gregori, IEEE 802.11 Optimal Performances: RTS/CTS Mechanism versus Basic Access Proc. IEEE Symp. Personal, Indoor, and Mobile Radio Comm., Sept. 2002.
[15] F. Cali', M. Conti, and E. Gregori, IEEE 802.11 Wireless LAN: Capacity Analysis and Protocol Enhancement Proc. INFOCOM Conf., pp. 142-149, Mar./Apr. 1998.
[16] F. Calì, M. Conti, and E. Gregori, “Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit,” IEEE/ACM Trans. Networking, vol. 8, no. 6, pp. 785-799, Dec. 2000.
[17] F. Calì, M. Conti, and E. Gregori, “Dynamic IEEE 802.11: Design, Modeling and Performance Evaluation,” IEEE J. Selected Areas in Comm., vol. 18, no. 9, pp. 1774-1786, Sept. 2000.
[18] A. Chandra, V. Gumalla, and J.O. Limb, Wireless Medium Access Control Protocols IEEE Comm. Surveys Second Quarter, 2000.
[19] K.C. Chen, Medium Access Control of Wireless LANs for Mobile Computing IEEE Networks, 1994.
[20] H.S. Chhaya and S. Gupta, Performance Modeling of Asynchronous Data Transfer Methods in the IEEE 802.11 MAC Protocol ACM/Balzer Wireless Networks, vol. 3, pp. 217-234, 1997.
[21] I. Chlamtac, M. Conti, and J. Liu, Mobile Ad hoc Networking: Imperatives and Challenges Ad Hoc Networks J., vol. 1, no. 1, Jan.-Mar. 2003.
[22] M. Conti, E. Gregori, and L. Lenzini, Metropolitan Area Network. London: Springer Verlag, 1997.
[23] M. Conti, Body, Personal, and Local Ad Hoc Wireless Networks Handbook of Ad Hoc Wireless Networks, M. Ilyas, ed., chapter 1, CRC Press, 2003.
[24] M. Conti and E. Gregori, Optimization of Bandwidth and Energy Consumption in Wireless Local Area Networks Performance 2002 tutorial paper, Lecture Notes on Computer Science Tutorial Lectures, M. Calzarossa, ed., 2002.
[25] M.S. Corson, J.P. Maker, and J.H. Cerincione, “Internet-Based Mobile Ad Hoc Networking,” Internet Computing, pp. 63-70, July-Aug. 1999.
[26] C. Coutras, S. Gupta, and N.B. Shroff, Scheduling of Realtime Traffic in IEEE 802.11 Wireless LANs ACM Wireless Networks (WINET), vol. 6, no. 6, pp. 457-466, Dec. 2000.
[27] B.P. Crow, I. Widjaja, J.G. Kim, and P.T. Sakai, IEEE 802.11 Wireless Local Area Networks IEEE Comm. Magazine, vol. 35, no. 9, pp. 116-126, Sept. 1997.
[28] G.H. Forman and J. Zahorjan, “The Challenges of Mobile Computing,” Computer, pp. 38-47, Apr. 1994.
[29] C.L. Fullmer and J.J. Garcia-Luna-Aceves, Solutions to Hidden Terminal Problems in Wireless Networks Proc. ACM SIGCOMM Conf., Sept. 1997.
[30] R.G. Gallager, “A Perspective on Multiaccess Channels,” IEEE/ACM Trans. Information Theory, vol. 31, pp. 124-142, 1985.
[31] R. Garcés and J.J. Garcia-Luna-Aceves, Floor Acquisition Multiple Access with Collision Resolution Proc. MOBICOM Conf., pp. 187-197, 1996.
[32] J.J. Garcia-Luna-Aceves and C.L. Fullmer, Floor Acquisition Multiple Access (FAMA) in Single-Channel Packet-Radio Networks ACM Mobile Networks and Applications J., vol. 4, no. 3, 1999.
[33] L. Georgiadis and P. Papantoni-Kazakos, Limited Feedback Sensing Algorithms for the Packet Broadcast Channel IEEE Trans. Information Theory, vol. 31, no. 2, pp. 280-294, Mar. 1985.
[34] M. Gerla and L. Kleinrock, Closed Loop Stability Control for S-Aloha Satellite Communications Proc. Fifth Data Comm. Symp., pp. 210-219, Sept. 1977.
[35] E.N. Gilbert, Capacity of a Burst-Noise Channel Bell Systems Technology J., vol. 39, pp. 1253-1265, 1960.
[36] J. Goodman, A.G. Greenberg, N. Madras, and P. March, Stability of Binary Exponential Backoff Proc. 17th Ann. ACM Symp. Theory of Computation, May 1985.
[37] B. Hajek and T. Van Loon, “Decentralized Dynamic Control of a Multi-Access Broadcast Channel,” IEEE Trans. Automatic Control, vol. 27, pp. 559-569, 1982.
[38] J.L. Hammond and P.J.P. O'Reilly, Performance Analysis of Local Computer Networks. Addison-Wesley, 1988.
[39] J. Hastad, T. Leighton, and B. Rogoff, Analysis of Backoff Protocols for Multiple Access Channels SIAM J. Computing, vol. 25, no. 4, pp. 740-774, Aug. 1996.
[40] D.P. Heyman and M.J. Sobel, Stochastic Models in Operations Research, vol. 1. McGraw-Hill, 1982.
[41] http://grouper.ieee.org/groups/802/11main.html , 2003.
[42] IEEE Standard for Wireless LAN Medium Access Control and Physical Layer Specification, P802.11 Nov. 1997.
[43] T. Imielinsky and B.R. Badrinath, Mobile Computing: Solutions and Challenges in Data Management Comm. ACM, Oct. 1994.
[44] E.S. Jung and N.H. Vaidya, An Energy Efficient MAC Protocol for Wireless LANs Proc. INFOCOM '02, vol. 3, pp. 1756-1764, 2002.
[45] F. Kelly, Stochastic Models of Computer Communications Systems J. Royal Statistical Soc. B, vol. 47, pp. 379-395, 1985.
[46] R. Kravets and P. Krishnan, Power Management Techniques for Mobile Communication Proc. Fourth Ann. ACM/IEEE Int'l Conf. Mobile Computing and Networking, 1998.
[47] D. Qiao and K.G. Shin, Achieving Efficient Channel Utilization and Weighted Fairness for Data Communications in IEEE 802.11 WLAN under the DCF Proc. Int'l Workshop Quality of Service, May 2002.
[48] R.L. Rivest, “Network Control by Bayesian Broadcast,” IEEE Trans. Information Theory, vol. 33, pp. 323-328, 1997.
[49] J.L. Sobrinho and A.S. Krishnakumar, “Quality-of-Service in Ad Hoc Carrier Sense Multiple Access Networks,” IEEE J. Selected Areas in Comm., vol. 17, no. 8, pp. 1353-1368, Aug. 1999.
[50] W. Stallings, Local and Metropolitan Area Networks, fifth ed. Prentice Hall, 1996.
[51] M. Stemm and R.H. Katz, Measuring and Reducing Energy Consumption of Network Interfaces in Hand-Held Devices Proc. Int'l Workshop Mobile Multimedia Comm., Sept. 1996.
[52] W.R. Stevens, TCP/IP Illustrated The Protocols, vol. 1, Reading, Mass.: Addison-Wesley, 1994.
[53] S. Tasaka, Performance Analysis of Multiple Access Protocols. MIT Press, 1986.
[54] F.A. Tobagi and L. Kleinrock, “Packet Switching in Radio Channels: Part II,” IEEE Trans. Comm., vol. 23, pp. 1417-1433, 1975.
[55] J.N. Tsitsiklis, Analysis on a Multiaccess Control Scheme IEEE Trans. Automation Control, vol. 32, no. 11, pp. 1017-1020, Nov. 1987.
[56] V. Vanni, Misure di Prestazioni del Protocollo TCP in Reti Locali Ad Hoc Computer Eng. Laurea Thesis, Pisa, Italy (in Italian), Feb. 2002.
[57] M. Veeraraghavan, N. Cocker, and T. Moors, Support of Voice Services in IEEE 802.11 Wireless LANs Proc. INFOCOM Conf., vol. 1, pp. 488-497, 2001.
[58] A. Veres, A.T. Campbell, M. Barry, and L.-H. Sun, “Supporting Service Differentiation in Wireless Packet Networks Using Distributed Control,” IEEE J. Selected Areas in Comm., special issue on mobility and resource management in next-generation wireless systems, vol. 19, no. 10, pp. 2094-2104, Oct. 2001.
[59] V.M. Vishnevsky and A.I. Lyakhov, 802.11 LANs: Saturation Throughput in the Presence of Noise Proc. Second Int'l IFIP TC6 Networking Conf., May 2002.
[60] V.M. Vishnevsky and A.I. Lyakhov, IEEE 802.11 Wireless LAN: Saturation Throughput Analysis with Seizing Effect Consideration Cluster Computing, vol. 5, no. 2, pp. 133-144, Apr. 2002.
[61] J. Weinmiller, H. Woesner, J.P. Ebert, and A. Wolisz, Analyzing and Tuning the Distributed Coordination Function in the IEEE 802.11 DFWMAC Draft Standard Proc. Int'l Symp. Modeling and Simulation of Computer and Telecommunication Systems, 1996.
[62] J. Weinmiller, M. Schläger, A. Festag, and A. Wolisz, Performance Study of Access Control in Wireless LANs-IEEE 802.11 DFWMAC and ETSI RES 10 HIPERLAN Mobile Networks and Applications, vol. 2, pp. 55-67, 1997.
[63] S. Xu and T. Saadawi, Does the IEEE 802.11 MAC Protocol Work Well in Multihop Wireless Ad Hoc Networks IEEE Comm. Magazine, vol. 39, no. 6, pp. 130-137, June 2001.
[64] S. Xu and T. Saadawi, Revealing the Problems with 802.11 MAC Protocol in Multi-Hop Wireless Ad Hoc Networks Computer Networks, vol. 38, no. 4, Mar. 2002.

Index Terms:
Wireless LAN (WLAN), IEEE 802.11, multiple access protocol (MAC), protocol capacity, performance analysis.
Citation:
Luciano Bononi, Marco Conti, Enrico Gregori, "Runtime Optimization of IEEE 802.11 Wireless LANs Performance," IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 1, pp. 66-80, Jan. 2004, doi:10.1109/TPDS.2004.1264787
Usage of this product signifies your acceptance of the Terms of Use.