
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
YuHua Lee, ShiJinn Horng, Jennifer Seitzer, "Parallel Computation of the Euclidean Distance Transform on a ThreeDimensional Image Array," IEEE Transactions on Parallel and Distributed Systems, vol. 14, no. 3, pp. 203212, March, 2003.  
BibTex  x  
@article{ 10.1109/TPDS.2003.1189579, author = {YuHua Lee and ShiJinn Horng and Jennifer Seitzer}, title = {Parallel Computation of the Euclidean Distance Transform on a ThreeDimensional Image Array}, journal ={IEEE Transactions on Parallel and Distributed Systems}, volume = {14}, number = {3}, issn = {10459219}, year = {2003}, pages = {203212}, doi = {http://doi.ieeecomputersociety.org/10.1109/TPDS.2003.1189579}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Parallel and Distributed Systems TI  Parallel Computation of the Euclidean Distance Transform on a ThreeDimensional Image Array IS  3 SN  10459219 SP203 EP212 EPD  203212 A1  YuHua Lee, A1  ShiJinn Horng, A1  Jennifer Seitzer, PY  2003 KW  Computer vision KW  Euclidean distance KW  distance transform KW  image processing KW  parallel algorithm KW  threedimension KW  EREW PRAM model. VL  14 JA  IEEE Transactions on Parallel and Distributed Systems ER   
Abstract—In a two or threedimensional image array, the computation of
[1] S.G. Akl, The Design and Analysis of Parallel Algorithms. Orlando, Fl.: Academic Press, 1989.
[2] S.G. Akl and K.A. Lyons, Parallel Computational Geometry, Prentice Hall, Englewood Cliffs, N.J., 1993.
[3] C. Arcelli and G. Sanniti di Baja, “A WidthIndependent Fast Thinning Algorithm,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 7, pp. 463474, 1985.
[4] C. Arcelli and G. Sanniti de Baja,“Computing Voronoi diagrams in digital pictures,” Pattern Recognition Letters, pp. 383389, 1986.
[5] H. Blum, “A Transformation for Extracting New Descriptors of Shape,” Models for the Perception of Speech and Visual Form, Mass.: MIT Press, W. WathenDunn, ed., pp. 362380, 1967.
[6] G. Borgefors, “Distance Transformations in Arbitrary Dimensions,” Computer Vision, Graphics, and Image Processing, vol. 27, pp. 321345, 1984.
[7] G. Borgefors, “Distance Transforms in Digital Images,” Computer Vision, Graphics, and Image Processing, vol. 34, pp. 344371, 1986.
[8] G. Borgefors, “Applications of Distance Transforms,” Aspects of Visual Form Processing, A. Arcelli et al., eds., pp. 83108, 1994.
[9] G. Borgefors, “On Digital Distance Transforms in Three Dimensions,” Computer Vision, Graphics, and Image Processing, vol. 64, pp. 368376, 1996.
[10] L. Chen and H.Y.H. Chuang, "A Fast Algorithm for Euclidean Distance Maps of a 2D Binary Image," Information Processing Letters, vol. 51, pp.2529, 1994.
[11] L. Chen and H.Y.H. Chuang, "An Efficient Algorithm for Complete Euclidean Distance Transform on MeshConnected SIMD," Parallel Computing, vol. 21, no. 5, pp. 841852, 1995.
[12] P.E. Danielsson, “Euclidean Distance Mapping,” Computer Vision, Graphics, and Image Processing, vol. 14, pp. 227248, 1980.
[13] A. Fujiwara, T. Masuzawa, and H. Fujiwara, "An Optimal Parallel Algorithm for the Euclidean Distance Maps," Information Processing Letters, vol. 54, pp. 295300, 1995.
[14] A. Fujiwara, M. Inoue, T. Masuzawa, and H. Fujiwara, “A Parallel Algorithm for Weighted Distance Transforms,” Proc. 11th Int'l Parallel Processing Symp., pp. 407412, 1997.
[15] T. He and A. Kaufman, “Collision Detection for Volumetric Models,” Proc. IEEE Visualization '97, pp. 2734, Oct. 1997.
[16] T. Hirata, "A Unified LinearTime Algorithm for Computing Distance Maps," Information Processing Letters, vol. 58, pp. 129133, 1996.
[17] J. J'aJ'a, An Introduction to Parallel Algorithms.New York: AddisonWesley, 1992.
[18] J.F. Jenq and S. Sahni, "Serial and Parallel Algorithms for Medial Axis Transform," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 12, pp. 1,2181,224, Dec. 1992.
[19] M.N. Kolountzakis and K.N. Kutulakos,“Fast computationion of the Euclidean distance map for binary images,” Information Processing Letters, vol. 43, pp. 181184, 1992.
[20] Y.H. Lee and S.J. Horng, “Fast Parallel Chessboard Distance Transform Algorithm,” Proc. Int'l Conf. Parallel and Distributed Systems, pp. 488493, 1996.
[21] Y.H. Lee and S.J. Horng, “The Equivalence of the Chessboard Distance Transform and the Medial Axis Transform,” Proc. 10th Int'l Parallel Processing Symp., pp. 424428, 1996.
[22] Y.H. Lee, S.J. Horng, T.W. Kao, F.S. Jaung, Y.J. Chen, and H.R. Tsai, "Parallel Computation of Exact Euclidean Distance Transform," Parallel Computing, vol. 22, no. 2, pp. 311325, 1996.
[23] Y.H. Lee, S.J. Horng, T.W. Kao, and Y.J. Chen, “Parallel Computing Euclidean Distance Transform on the Mesh of Trees and Hypercube Computer,” Computer Vision and Image Understanding, vol. 68, pp. 109119, 1997.
[24] Y.H. Lee and S.J. Horng, “Equivalence of the Chessboard Distance Transform and the Medial Axis Transform,” Int'l J. Computer Math., vol. 65, pp. 165177, 1997.
[25] Y.H. Lee and S.J. Horng, “Optimal Computing the Chessboard Distance Transform on Parallel Processing Systems,” Computer Vision and Image Understanding, vol. 73, pp. 374390, 1999.
[26] Y.H. Lee, S.J. Horng, and J. Seitzer, Fast Computation of the 3D Euclidean Distance Transform on the EREW PRAM Model Proc. 2001 Int'l Conf. Parallel Processing, pp. 471478, 2001.
[27] J. Mayer and G.G. Langdon, “PostProcessing Enhancement of Decompressed Images Using Variable Order Bezier Polynomials and Distance Transform,” IEEE Proc. 1998 Data Compression Conf., p. 561, 1998.
[28] D.W. Paglieroni,“A unified distance transform algorithm and architecture,” Machine Vision and Applications, vol. 5, pp. 4755, 1992.
[29] D.W. Pagliero,“Distance transforms,” Computer Vision, Graphics, and Image Processing: Graphical models and Image Processing, vol. 54, pp. 5674, 1992.
[30] Y. Pan, M. Hamdi, and K. Li, “Euclidean Distance Transform for Binary Images on Reconfigurable MeshConnected Computers,” IEEE Trans. Systems, Man, and Cybernetics, vol. 30, pp. 240244, 2000.
[31] A. Rosenfeld and J. Pfaltz,“Sequential operations in digital picture processing,” J. ACM, vol. 13, pp. 471494, 1966.
[32] A. Rosenfeld and J.L. Pfalz, “Distance Function on Digital Pictures,” Pattern Recognition, vol. 1, pp. 3361, 1968.
[33] A. Rosenfeld and A.C. Kak,Digital Picture Processing. Academic Press, 2nd ed., 1982
[34] T. Saito and J. Toriwaki, “New Algorithms for Euclidean Distance Transformation of an nDimensional Digitized Picture with Applications,” Pattern Recognition, vol. 27, pp. 15511565, 1994.
[35] O. Schwarzkopf, “Parallel Computation of Distance Transforms,” Algorithmica, vol. 6, pp. 685697, 1991.
[36] A. Utsumi, T. Miyasato, F. Kishino, J. Ohya, and R. Ryohei, “MultipleCamera Based Hand Pose Estimation Method Using Distance Transformation,” J. Institute of Image Information and Television Engineers, vol. 51, pp. 21162125, 1997.
[37] H. Yamada, “Complete Euclidean Distance Transformation by Parallel Operation,” Proc. Seventh Int'l Conf. Pattern Recognition, vol. 1, pp. 6971, 1984.
[38] Q.Z. Ye, "The Signed Euclidean Distance Transform and Its Applications," Int'l Conf. Pattern Recognition, pp. 495499, 1988.