The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.09 - September (2001 vol.12)
pp: 899-911
ABSTRACT
<p><b>Abstract</b>—Load-balancing problems arise in many applications, but, most importantly, they play a special role in the operation of parallel and distributed computing systems. Load-balancing deals with partitioning a program into smaller tasks that can be executed concurrently and mapping each of these tasks to a computational resource such a processor (e.g., in a multiprocessor system) or a computer (e.g., in a computer network). By developing strategies that can map these tasks to processors in a way that balances out the load, the total processing time will be reduced with improved processor utilization. Most of the research on load-balancing focused on static scenarios that, in most of the cases, employ heuristic methods. However, genetic algorithms have gained immense popularity over the last few years as a robust and easily adaptable search technique. The work proposed here investigates how a genetic algorithm can be employed to solve the <it>dynamic</it> load-balancing problem. A dynamic load-balancing algorithm is developed whereby optimal or near-optimal task allocations can “evolve” during the operation of the parallel computing system. The algorithm considers other load-balancing issues such as threshold policies, information exchange criteria, and interprocessor communication. The effects of these and other issues on the success of the genetic-based load-balancing algorithm as compared with the first-fit heuristic are outlined.</p>
INDEX TERMS
Genetic algorithms, heuristics, load-balancing, parallel processing, scheduling.
CITATION
Albert Y. Zomaya, Yee-Hwei Teh, "Observations on Using Genetic Algorithms for Dynamic Load-Balancing", IEEE Transactions on Parallel & Distributed Systems, vol.12, no. 9, pp. 899-911, September 2001, doi:10.1109/71.954620
23 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool