
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
William Aiello, Sandeep N. Bhatt, Fan R.K. Chung, Arnold L. Rosenberg, Ramesh K. Sitaraman, "Augmented Ring Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 6, pp. 598609, June, 2001.  
BibTex  x  
@article{ 10.1109/71.932713, author = {William Aiello and Sandeep N. Bhatt and Fan R.K. Chung and Arnold L. Rosenberg and Ramesh K. Sitaraman}, title = {Augmented Ring Networks}, journal ={IEEE Transactions on Parallel and Distributed Systems}, volume = {12}, number = {6}, issn = {10459219}, year = {2001}, pages = {598609}, doi = {http://doi.ieeecomputersociety.org/10.1109/71.932713}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Parallel and Distributed Systems TI  Augmented Ring Networks IS  6 SN  10459219 SP598 EP609 EPD  598609 A1  William Aiello, A1  Sandeep N. Bhatt, A1  Fan R.K. Chung, A1  Arnold L. Rosenberg, A1  Ramesh K. Sitaraman, PY  2001 KW  Ring networks KW  chordal rings KW  express rings KW  multirings KW  hierarchical ring networks KW  grid graphs KW  graph embedding KW  diameter tradeoffs. VL  12 JA  IEEE Transactions on Parallel and Distributed Systems ER   
Abstract—We study four augmentations of ring networks which are intended to enhance a ring's efficiency as a communication medium significantly, while increasing its structural complexity only modestly.
[1] W. Aiello, S.N. Bhatt, F.R.K. Chung, A.L. Rosenberg, and R.K. Sitaraman, “Augmented Ring Networks,” Invited Talk, Int'l Conf. Math. Computer Modeling and Scientific Computing, (no proceedings) 1997.
[2] F.S. Annexstein, M. Baumslag, and A.L. Rosenberg, “Group Action Graphs and Parallel Architectures,” SIAM J. Computing, vol. 19 pp. 544569, 1990.
[3] B.W. Arden and H. Lee, “Analysis of Chordal Ring Networks,” IEEE Trans. Computers, vol. 30 pp. 291295, 1981.
[4] J.C. Bermond, F. Comellas, and D.F. Hsu, “Distributed Loop Computers: A Survey,” J. Parallel and Distributed Computing, vol. 24, pp. 210, 1995.
[5] J.C. Bermond, J.M. Fourneau, and A. JeanMarie, “A Graph Theoretical Approach to the Equivalence of Multistage Interconnection Networks,” Discrete Applied Math., vol. 22, pp. 201214, 1988/89.
[6] S.N. Bhatt, F.R.K. Chung, J.W. Hong, F.T. Leighton, B. Obrenic, A.L. Rosenberg, and E.J. Schwabe, “Optimal Emulations by ButterflyLike Networks,” J. ACM, vol. 43, pp. 293330, 1996.
[7] M. Blum and D. Kozen, “On the Power of the Compass,” Proc. 19th IEEE Symp. Foundations of Computer Science, pp. 132142, 1978.
[8] B. Bollobás and F.R.K. Chung, “The Diameter of a Cycle Plus a Random Matching,” SIAM J. Discrete Math., vol. 1, pp. 328333, 1988.
[9] H. Burkhardt et al., “Overview of the KSR1 Computer System,” Technical Report KSRTR 9202001, Kendall Square Research, 1992.
[10] S. Cosares, I. Saniee, and O. Wasem, “Network Planning with the SONET Toolkit,” Bellcore Exchange, pp. 815, Sept./Oct. 1992.
[11] W.J. Dally, “Express Cubes: Improving the Performance ofkArynCube Interconnection Networks,” IEEE Trans. Computers, vol. 40, pp. 10161023, 1991.
[12] Y. Dinitz, M. Feighelstein, and S. Zaks, “On Optimal Graphs Embedded into Paths and Rings Using$l_1 \hbox {} {\rm Spheres}$,” Proc. 23rd Int'l Workshop GraphTheoretic Concepts in Computer Science, 1997.
[13] R. Feldmann and W. Unger, “The CubeConnected Cycles Network Is a Subgraph of the Butterfly Network,” Parallel Processing Letters, vol. 2, pp. 1319, 1992.
[14] A. Frank, T. Nishizeki, N. Saito, H. Suzuki, and É. Tardos, “Algorithms for Routing around a Rectangle,” Discrete Applied Math., vol. 40, pp. 363378, 1992.
[15] O. Gerstel, I. Cidon, and S. Zaks, “The Layout of Virtual Paths in ATM Networks,” ACM/IEEE Trans. Networking, vol. 4, pp. 873884, 1996.
[16] O. Gerstel and S. Zaks, “The Virtual Path Layout Problem in Fast Networks,” Proc. 13th ACM Symp. Principles of Distributed Computing, pp. 235243, 1994.
[17] O. Gerstel and S. Zaks, “The Virtual Path Layout Problem in ATM Networks,” Proc. First Int'l Colloquium Structure, Information and Comm. Complexity, pp. 151166, 1994.
[18] O. Gerstel, A. Wool, and S. Zaks, “Optimal Layouts on a Chain ATM Network,” Discrete Applied Math., vol. 83, no. 13, pp. 157178, 1998.
[19] V.C. Hamacher and H. Jiang, “Comparison of Mesh and Hierarchical Networks for Multiprocessors,” Proc. Int'l Conf. Parallel Processing, vol. I pp. 6771, 1994.
[20] F. Harary, Graph Theory. Reading, Mass.: AddisonWesley, 1969.
[21] C.T. Ho and S.L. Johnsson, “Embedding Meshes in Boolean Cubes by Graph Decomposition,” J. Parallel and Distributed Computing, vol. 8, pp. 325339, 1990.
[22] R. Koch, F.T. Leighton, B.M. Maggs, S.B. Rao, A.L. Rosenberg, and E.J. Schwabe, “WorkPreserving Emulations of FixedConnection Networks,” J. ACM, vol. 44, pp. 104147, 1997.
[23] E. Kranakis, D. Krizanc, and A. Pelc, “HopCongestion Tradeoffs for HighSpeed Networks,” Int'l J. Foundations of Computer Science, vol. 8, pp. 117126, 1997.
[24] C.P. Kruskal and M. Snir, “A Unified Theory of Interconnection Network Structure,” Theoretical Computer Science, vol. 48, pp. 7594, 1986.
[25] D.M. Kwai and B. Parhami, “Periodically Regular Chordal Rings: Generality, Scalability, and VLSI Layout,” Proc. Eighth IEEE Symp. Parallel and Distributed Processing, pp. 148151, 1996.
[26] C. Lam, H. Jiang, and V.C. Hamacher, “Design and Analysis of Hierarchical Ring Networks for SharedMemory Multiprocessors,” Proc. Int'l Conf. Parallel Processing, pp. 4650, 1995.
[27] A. Litman and A.L. Rosenberg, “Balancing Communication in RingStructured Networks,” Technical Report 9380, Univ. of Massachusetts, 1993.
[28] A. Michail, “Optimal Broadcast and Summation on Hierarchical Ring Architectures,” Parallel Processing Letters, vol. 8, 1998.
[29] E.J. Schwabe, “On the Computational Equivalence of HypercubeDerived Networks,” Proc. Second ACM Symp. Parallel Algorithms and Architectures, pp. 388397, 1990.
[30] Z.G. Vranesic, M. Stumm, D.M. Lewis, and R. White, “Hector: A Hierarchically Structured SharedMemory Multiprocessor,” Computer, vol. 24, no. 1, pp. 7279, Jan. 1991.
[31] S. Zaks, “Path Layout in ATM Networks—A Survey,” Proc. DIMACS Workshop Networks in Distributed Computing, 1997.
[32] C. Zamfirescu and T. Zamfirescu, “Hamiltonian Properties of Grid Graphs,” SIAM J. Discrete Math., vol. 5, pp. 564570, 1992.