
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Tatsuya Hayashi, Koji Nakano, Stephan Olariu, "Optimal Parallel Algorithms for Finding Proximate Points, with Applications," IEEE Transactions on Parallel and Distributed Systems, vol. 9, no. 12, pp. 11531166, December, 1998.  
BibTex  x  
@article{ 10.1109/71.737693, author = {Tatsuya Hayashi and Koji Nakano and Stephan Olariu}, title = {Optimal Parallel Algorithms for Finding Proximate Points, with Applications}, journal ={IEEE Transactions on Parallel and Distributed Systems}, volume = {9}, number = {12}, issn = {10459219}, year = {1998}, pages = {11531166}, doi = {http://doi.ieeecomputersociety.org/10.1109/71.737693}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Parallel and Distributed Systems TI  Optimal Parallel Algorithms for Finding Proximate Points, with Applications IS  12 SN  10459219 SP1153 EP1166 EPD  11531166 A1  Tatsuya Hayashi, A1  Koji Nakano, A1  Stephan Olariu, PY  1998 KW  Proximate points KW  convex hulls KW  parallel algorithms KW  digital geometry KW  image analysis KW  pattern recognition KW  largest empty circles KW  cellular systems. VL  9 JA  IEEE Transactions on Parallel and Distributed Systems ER   
Abstract—Consider a set
[1] P. Baglietto, M. Maresca, and M. Migliardi, "Euclidean Distance Transform on Polymorphic Processor Array," Proc. Computer Architectures for Machine Perception, pp. 288293, 1995.
[2] D.H. Ballard and C.M. Brown, Computer Vision, Prentice Hall, Upper Saddle River, N.J., 1982.
[3] O. Berkman, B. Schieber, and U. Vishkin, "A Fast Parallel Algorithm for Finding the Convex Hull of a Sorted Point Set," Int'l J. Comput. Geom. Appl., vol. 6, no. 2, pp. 231241, June 1996.
[4] V. Bokka, H. Gurla, S. Olariu, and J.L. Schwing, "Time and VLSIOptimal Convex Hull Computation on Meshes with Multiple Broadcasting," Information Processing Letters, vol. 56, no. 5, pp. 273280, 1995.
[5] G. Borgefors, "Centres of Maximal Discs in the 5711 Distance Transform," Proc. Eighth Scandinavian Conf. Image Analysis, vol. 1, pp. 105111, 1993.
[6] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman, “Linear time Euclidean Distance Transform Algorithms,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, pp. 529533, 1995.
[7] D.Z. Chen,“Efficient geometric algorithms on the EREWPRAM,” Proc. 28th Ann. Allerton Conf. on Comm., Control, and Computing, pp. 818827, 1990; also IEEE Trans. Parallel and Distributed Systems, vol. 6, no. 1, pp. 4147, 1995.
[8] L. Chen, "Optimal Algorithm for Complete Euclidean Distance Transform," Chinese J. Computers, vol. 18, no. 8, pp. 611616, 1995.
[9] L. Chen and H.Y.H. Chuang, "Designing Systolic Architectures for Complete Euclidean Distance Transform," J. VLSI Signal Processing, vol. 10, no. 2, pp. 169179, 1995.
[10] L. Chen and H.Y.H. Chuang, "An Efficient Algorithm for Complete Euclidean Distance Transform on MeshConnected SIMD," Parallel Computing, vol. 21, no. 5, pp. 841852, 1995.
[11] L. Chen and H.Y.H. Chuang, "A Fast Algorithm for Euclidean Distance Maps of a 2D Binary Image," Information Processing Letters, vol. 51, pp.2529, 1994.
[12] W. Chen, K. Nakano, T. Masuzawa, and N. Tokura, "Optimal Parallel Algorithms for Computing Convex Hulls," IEICE Trans., vol. J74DI, no. 6, pp. 809820, 1992.
[13] W. Chen, K. Nakano, T. Masuzawa, and N. Tokura, "A Parallel Method for the Prefix Convex Hulls Problem," IEICE Trans. Fundamentals Electronic Comm.. and Computer Science, vol. E77A, no. 10, pp. 1,6751,683, 1994.
[14] H.Y.H. Chuang and L. Chen, "SIMD Hypercube Algorithm for Complete Euclidean Distance Transform," Proc. IEEE Int'l Conf. Algorithms and Architectures for Parallel Processing, vol. 2, pp. 874877, 1995.
[15] S.A. Cook, C. Dwork, and R. Reischuk, "Upper and Lower Time Bounds for Parallel Random Access Machines without Simultaneous Writes," SIAM J. Computing, vol. 15, pp. 8797, 1986.
[16] H.N. Djidjev and A. Lingas, "On Computing Voronoi Diagrams for Sorted Point Sets," Int'l J. Comput. Geom. Appl., 1995.
[17] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. Wiley and Sons, 1973.
[18] A. Fujiwara, T. Masuzawa, and H. Fujiwara, "An Optimal Parallel Algorithm for the Euclidean Distance Maps," Information Processing Letters, vol. 54, pp. 295300, 1995.
[19] T. Hirata, "A Unified LinearTime Algorithm for Computing Distance Maps," Information Processing Letters, vol. 58, pp. 129133, 1996.
[20] J. J'aJ'a, An Introduction to Parallel Algorithms.New York: AddisonWesley, 1992.
[21] F. Lee and R. Jou, "Efficient Parallel Geometric Algorithms on a Mesh of Trees," Proc. 33rd Ann. Southeast Conf., pp. 213218, 1995.
[22] Y.H. Lee, S.J. Horng, T.W. Kao, F.S. Jaung, Y.J. Chen, and H.R. Tsai, "Parallel Computation of Exact Euclidean Distance Transform," Parallel Computing, vol. 22, no. 2, pp. 311325, 1996.
[23] O. Okun and S. Ablameyko, "Modified Distance Transform with Raster Scanning Value Propagation," Proc. SPIEInt'l Soc. Optical Eng., vol. 2,826, pp. 284293, 1996.
[24] S. Pavel and S.G. Akl, "Efficient Algorithms for the Euclidean Distance Transform," Parallel Processing Letters, vol. 5, no. 2, pp. 205212, 1995.
[25] F.P. Preparata and M.I. Shamos, Computational Geometry. SpringerVerlag, 1985.
[26] T.S. Rappaport, Wireless Communications: Principles&Practice. Prentice Hall, 1996.
[27] G. Sanniti di Baja and L. Serino, "An Application of QuasiEuclidean Distance Maps," Proc. Eighth Scandinavian Conf. Image Analysis, vol. 2, pp. 1,1951,201, 1993.
[28] F.Y. Shih and C.C. Pu, "A Skeletonization Algorithm by Maxima Tracking on Euclidean Distance Transform," Pattern Recognition, vol. 28, no. 3, pp. 331341, 1995.
[29] Y. Shiloach and U. Vishkin, "Finding the Maximum, Merging and Sorting in a Parallel Computation Model," J. Algorithms, vol. 2, no. 1, pp. 88102, 1981.
[30] L.G. Valiant, "Parallelism in Comparison Problem," SIAM J. Computing, vol. 4, no. 3, pp. 348355, 1975.
[31] Y. Ge and J.M. Fitzpatrick, "On the Generation of Skeletons From Discrete Euclidean Distance Maps," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, pp. 1,0551,066, 1996.