
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Anshul Gupta, Vipin Kumar, Ahmed Sameh, "Performance and Scalability of Preconditioned Conjugate Gradient Methods on Parallel Computers," IEEE Transactions on Parallel and Distributed Systems, vol. 6, no. 5, pp. 455469, May, 1995.  
BibTex  x  
@article{ 10.1109/71.382315, author = {Anshul Gupta and Vipin Kumar and Ahmed Sameh}, title = {Performance and Scalability of Preconditioned Conjugate Gradient Methods on Parallel Computers}, journal ={IEEE Transactions on Parallel and Distributed Systems}, volume = {6}, number = {5}, issn = {10459219}, year = {1995}, pages = {455469}, doi = {http://doi.ieeecomputersociety.org/10.1109/71.382315}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Parallel and Distributed Systems TI  Performance and Scalability of Preconditioned Conjugate Gradient Methods on Parallel Computers IS  5 SN  10459219 SP455 EP469 EPD  455469 A1  Anshul Gupta, A1  Vipin Kumar, A1  Ahmed Sameh, PY  1995 VL  6 JA  IEEE Transactions on Parallel and Distributed Systems ER   
[1] E. Anderson,“Parallel implementation of preconditioned conjugate gradient methods for solving sparse systems of linear equations,”Cent. for Supercomput. Res. and Development, Univ. Illinois, Urbana, IL, Tech. Rep. 805, 1988.
[2] C. Aykanat, F. Ozguner, F. Ercal, and P. Sadayappan,“Iterative algorithms for solution of large sparse systems of linear equations on hypercubes,”IEEE Trans. Comput., vol. 37, pp. 1554–1567, Dec. 1988.
[3] D. L. Eager, J. Zahorjan, and E. D. Lazowska,“Speedup versus efficiency in parallel systems,”IEEE Trans. Comput., vol. 38, pp. 408–423, Mar. 1989.
[4] A. George and J. W.H. Liu,Computer Solution of Large Sparse Positive Difinite Systems. Englewood Cliffs, NJ: PrenticeHall, 1981.
[5] N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer,“A comparison of several bandwidth and profile reduction algorithms,”ACM Trans. Math. Software, vol. 2, pp. 322–330, 1976.
[6] G. H. Golub and C. Van Loan,Matrix Computations: Second Edition. Baltimore, MD: The Johns Hopkins University Press, 1989.
[7] A. Grama, A. Gupta, and V. Kumar,“Isoefficiency: Measuring the scalability of parallel algorithms and architectures,”IEEE Parallel and Distrib. Technol., vol. 1, pp. 12–21, Aug. 1993. Also available in Dep. of Comput. Sci., Tech. Rep. TR 9324, Univ. Minnesota, Minneapolis, MN.
[8] A. Gupta and V. Kumar,“A scalable parallel algorithm for sparse matrix factorization,”Dep. Comput. Sci., Univ. Minnesota, Minneapolis, MN, Tech. Rep. 9419, 1994. A short version appeared inSupercomputing '94.
[9] ——,“The scalability of FFT on parallel computers,”IEEE Trans. Parallel and Distrib. Syst., vol. 4, pp. 922–932, Aug. 1993. A detailed version available in the Dep. Comput. Sci., Tech. Rep. TR 9053, Univ. Minnesota, Minneapolis, MN.
[10] J. L. Gustafson,“Reevaluating Amdahl's law,”Commun. ACM, vol. 31, no. 5, pp. 532–533, 1988.
[11] J. L. Gustafson, G. R. Montry, and R. E. Benner,“Development of parallel methods for a 1024processor hypercube,”SIAM J. Scientif. and Statist. Comput., vol. 9, no. 4, pp. 609–638, 1988.
[12] S. W. Hammond and R. Schreiber,“Efficient ICCG on a sharedmemory multiprocessor,”Int. J. High Speed Comput., vol. 4, no. 1, pp. 1–22, Mar. 1992.
[13] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programmability. McGrawHill, 1993.
[14] C. Kamath and A. H. Sameh,“The preconditioned conjugate gradient algorithm on a multiprocessor,”inAdvances in Computer Methods for Partial Differential Equations, R. Vichnevetsky and R. S. Stepleman, Eds. New York; IMACS, 1984.
[15] A. H. Karp and H. P. Flatt,“Measuring parallel processor performance,”Commun. ACM, vol. 33, no. 5, pp. 539–543, 1990.
[16] S. K. Kim and A. T. Chronopoulos,“A class of Lanczoslike algorithms implemented on parallel computers,”Parallel Comput., vol. 17, pp. 763–777, 1991.
[17] K. Kimura and I. Nobuyuki,“Probabilistic analysis of the efficiency of the dynamic load distribution,”inProc. Sixth Distrib. Memory Comput. Conf., 1991.
[18] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design and Analysis of Algorithms. Benjamin Cummings, 1994.
[19] V. Kumar and A. Gupta,“Analyzing scalability of parallel algorithms and architectures,”Dep. Comput. Sci., Univ. Minnesota, Minneapolis, MN, Tech. Rep. TR 9118, 1991; to appear inJ. Parallel and Distrib. Comput., 1994. A shorter version appears inProc. 1991 Int. Conf. Supercomput., 1991, pp. 396–405.
[20] C. E. Leiserson,“Fattrees: Universal networks for hardware efficient supercomputing,”inProc. 1985 Int. Conf. Parallel Processing, 1985, pp. 393–402.
[21] R. Melhem,“Toward efficient implementation of preconditioned conjugate gradient methods on vector supercomputers,”Int. J. Supercomput. Appli., vol. I, no. 1, pp. 70–97, 1987.
[22] D. Nussbaum and A. Agarwal,“Scalability of parallel machines,”Commun. ACM, vol. 34, pp. 57–61, 1991.
[23] S. Ranka and S. Shani,Hypercube Algorithms for Image Processing and Pattern Recognition. New York: SpringerVerlag, 1990.
[24] Y. Saad,“SPARSKIT: A basic tool kit for sparse matrix computations,”Res. Inst. Advanced Comput. Sci., NASA Ames Res. Cen., Moffet Field, CA, Tech. Rep. 9020, 1990.
[25] Y. Saad and M. H. Schultz,“Parallel implementations of preconditioned conjugate gradient methods,”Yale Univ., Dep. of Comput. Sci., New Haven, CT, Tech. Rep. YALEU/DCS/RR425, 1985.
[26] V. Singh, V. Kumar, G. Agha, and C. Tomlinson,“Scalability of parallel sorting on mesh multicomputers,”Int. J. Parallel Programming, vol. 20, no. 2, 1991.
[27] Z. Tang and G.J. Li,“Optimal granularity of grid iteration problems,”inProc. 1990 Int. Conf. Parallel Processing, 1990, pp. I111–I118.
[28] F. A. VanCatledge,“Toward a general model for evaluating the relative performance of computer systems,”Int. J. Supercomput. Appli., vol. 3, no. 2, pp. 100–108, 1989.
[29] H. A. van der Vorst,“A vectorizable variant of some ICCG methods,”SIAM J. Scientif. and Statist. Comput., vol. III, no. 3, pp. 350–356, 1982.
[30] ——,“Large tridiagonal and block tridiagonal linear systems on vector and parallel computers,”Parallel Comput., vol. 5, pp. 45–54, 1987.
[31] J. Woo and S. Sahni,“Computing biconnected components on a hypercube,”J. Supercomput., June 1991. Also available from the Dep. Comput. Sci., Univ. Minnesota, Minneapolis, MN, Tech. Rep. TR 897.
[32] P. H. Worley,“The effect of time constraints on scaled speedup,”SIAM J. Scientif. and Statist. Comput., vol. 11, no. 5, pp. 838–858, 1990.
[33] J. R. Zorbas, D. J. Reble, and R. E. VanKooten,“Measuring the scalability of parallel computer systems,”inSupercomput.'89 Proc., 1989, pp. 832–841.