
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Mythili Mantharam, P. J. Eberlein, "The Real TwoZero Algorithm: A Parallel Algorithm to Reduce a Real Matrix to a Real Schur Form," IEEE Transactions on Parallel and Distributed Systems, vol. 6, no. 1, pp. 4862, January, 1995.  
BibTex  x  
@article{ 10.1109/71.363411, author = {Mythili Mantharam and P. J. Eberlein}, title = {The Real TwoZero Algorithm: A Parallel Algorithm to Reduce a Real Matrix to a Real Schur Form}, journal ={IEEE Transactions on Parallel and Distributed Systems}, volume = {6}, number = {1}, issn = {10459219}, year = {1995}, pages = {4862}, doi = {http://doi.ieeecomputersociety.org/10.1109/71.363411}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Parallel and Distributed Systems TI  The Real TwoZero Algorithm: A Parallel Algorithm to Reduce a Real Matrix to a Real Schur Form IS  1 SN  10459219 SP48 EP62 EPD  4862 A1  Mythili Mantharam, A1  P. J. Eberlein, PY  1995 VL  6 JA  IEEE Transactions on Parallel and Distributed Systems ER   
[1] C. Bischof,“A parallel ordering for the block Jacobi method on a hypercube architecture for parallel computation,”in M. Heath, Ed.,SIAM Hypercube II, 1987.
[2] A. W. Bojanczyk and A. Lutoborski,“Computation of the Euler angles of a symmetric matrix,”SIAM J. Matrix Analysis, to appear.
[3] R. Brent and F. Luk,“The solution of singularvalue and symmetric Eigenvalue problems on multiprocessor arrays,”SIAM SISC, vol. 6, pp. 69–84, 1985.
[4] P. J. Eberlein,“A Jacobilike method for the automatic computation of Eigenvalues and Eigenvectors of an arbitrary matrix,”J. Soc. Indus. Appl. Math., vol. 10, no. 1,PP.——, Mar. 1962.
[5] ——,“Solution to the complex Eigenproblem by a norm reducing Jacobitype method,”Math., vol. 14, pp. 232–245, 1970.
[6] ——,“On the diagonalization of complex symmetric matrices,”J. Inst. Math. Applics., vol. 7, pp. 337–383, 1971.
[7] P. J. Eberlein and J. Boothroyd,“Solution to the Eigenproblem by a norm reducing Jacobitype method,”Numer. Math., vol. 11 pp. 1–12, 1968.
[8] P. J. Eberlein,“On using the Jacobi method for parallel computation,”SIAM J. Alg. Disc. Math., vol. 8, pp. 790–796, 1987.
[9] ——,“On using the Jacobi method on the hypercube,”in M. T. Heath, Ed.,Proc. 2nd Conf. Hypercube Multiprocessors, 1987, pp. 605–611.
[10] P. J. Eberlein and M. Mantharam,“Jacobisets for the Eigenproblem and their effect on convergence studied by graphic representations,”ch. 3,Proc. IV SIAM Conf. on Parallel Process for Sci. Comput., Chicago IL, USA, Dec. 1989.
[11] P. J. Eberlein and H. Park,“Efficient implementation of Jacobi algorithms and Jacobi sets on distributed memory architectures,”J. Parallel Disrib. Computing, vol. 8, pp. 358–366, 1990.
[12] G. E. Forsythe and P. Henrici,“The cyclic Jacobi method for computing the principal values of a complex matrix,”Trans. Amer. Math. Soc., vol. 94, pp. 1–23, 1960.
[13] G. R. Gao and S. J. Thomas,“An optimal parallel Jacobilike algorithm for the singular value decomposition,”Tech. Rep. TRSOCS87.16, McGill Univ., Montréal, PQ, Canada, 1988.
[14] F. T. Luk and H. T. Park,“A proof of convergence for two parallel Jacobi SVD algorithms,”IEEE Trans. Comput., vol. 38, pp. 806–811, June 1989.
[15] M. Mantharam and P. J. Eberlein,“Two new Jacobisets for parallel Jacobi methods,”Parallel Computing, vol. 1, pp. 437–454, 1993.
[16] ——,“Block recursive algorithm to generate Jacobisets,”Parallel Computing, vol. 19, pp. 481–496, 1993.
[17] G. W. Stewart,“A Jacobilike algorithm for computing the Schur decomposition of a nonhermitian matrix,”SIAM J. Sci. Statis. Comput., vol. 6, pp. 853–864, 1985.
[18] K. Veseli\' c,“On a class of Jacobilike procedures for diagonalizing arbitrary real matrices,”Numer. Math., vol. 33, pp. 157–172, 1979.
[19] ——,“A quadratically convergent Jacobilike method for real matrices with complex Eigenvalues,”Numer. Math., vol. 33, pp. 425–435, 1979.