This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Parallel Algorithm for an Efficient Mapping of Grids in Hypercubes
August 1993 (vol. 4 no. 8)
pp. 933-946

The authors parallelize the embedding strategy for mapping any two-dimensional grid into its optimal hypercube with minimal dilation. The parallelization allows each hypercube node to independently determine, in constant time, which grid node it will simulate and the communication paths it will take to reach the hypercube nodes that simulate its grid-neighbors. The paths between grid-neighbors are chosen in such a way as to curb the congestion at each hypercube node and across each hypercube edge. Explicity, the node congestion for the embedding is at most 6, one above optimal, while the edge congestion is at most 5.

[1] S. Bettayeb, I. H. Sudborough, and Z. Miller, "Embedding grids into hypercubes," inProc. 3rd Aegean Workshop Comput., 1988.
[2] J. E. Brandenburg and D. S. Scott, "Embeddings of communication trees and grids into hypercubes," Intel Scientific Computers Rep. 280 182-001, 1985.
[3] M. Y. Chan, "Dilation-2 embeddings of grids into hypercubes," inProc. Int. Conf. Parallel Processing, Aug. 1988, pp. 295-298.
[4] M. Y. Chan, "Embedding of 3-dimensional grids into hypercubes," inProc. Int. Conf. Hypercubes, Concurrent Comput., and Appl., Mar. 1989, pp. 297-299.
[5] M. Y. Chan, "Embedding of grids into optimal hypercubes,"SIAM. J. Comput., vol. 20, no. 5, pp 834-864, Oct. 1991.
[6] M. Y. Chan and F. Y. L. Chin, "On embedding rectangular grids in hypercubes,"IEEE Trans. Comput., vol. C-37, pp 1285-1288, 1988.
[7] I. S. Duff, "Parallel implementation of multifrontal techniques," Tech. Memo. 49, Argonne National Lab., 1985.
[8] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman, "Applications of an element model for Gaussian elimination," inSparse Matrix Computations. New York: Academic, 1976, pp. 85-96.
[9] D. S. Greenberg, "Optimal expansion embeddings of meshes in hypercubes," Tech. Rep. YALEU/CSD/RR-535, Dep. Comput. Sci., Yale Univ., Aug. 1987.
[10] C. T. Ho and S. L. Johnsson, "Embedding meshes in boolean cubes by graph decomposition,"J. Parallel and Distrib. Computing, Apr. 1990, pp. 325-339.
[11] R. M. Karp, E. Upfal, and A. Wigderson, "Constructing a perfect matching is in randomNC," Combinatorica, vol. 6, pp. 35-58, 1986.
[12] C. L. Liu,Introduction to Combinatorial Mathematics. New York: McGraw Hill, 1968.
[13] M. Livingston and Q. F. Stout, "Embeddings in hypercubes," inProc. Sixth Int. Conf. Mathemat. Modeling, Aug. 1987, pp. 222-227.
[14] N. Pippenger, "On simultaneous resource bounds," inProc. 20th Annu. IEEE Symp. Foundation of Comput. Sci., 1979, pp. 307-311.
[15] E. M. Reingold, J. Nievergelt, and N. Deo,Combinatorial Algorithms. Englewood Cliffs, NJ: Prentice Hall, 1977.
[16] Y. Saad and M. H. Schultz, "Topological properties of hypercubes,"IEEE Trans. Comput., vol. C-37, pp. 867-872, 1988.
[17] C. L. Seitz, "The Cosmic Cube,"Commun. ACM, pp. 22-33, Jan. 1985.

Index Terms:
Index Termsgrid mapping; 2D grids; parallel algorithm; hypercubes; embedding strategy; minimal dilation; parallelization; communication paths; grid-neighbors; node congestion; hypercube networks; parallel algorithms
Citation:
M.Y. Chan, F. Chin, "A Parallel Algorithm for an Efficient Mapping of Grids in Hypercubes," IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 8, pp. 933-946, Aug. 1993, doi:10.1109/71.238627
Usage of this product signifies your acceptance of the Terms of Use.