
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
K. Kim, V.K. Prasanna, "Latin Squares for Parallel Array Access," IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 4, pp. 361370, April, 1993.  
BibTex  x  
@article{ 10.1109/71.219753, author = {K. Kim and V.K. Prasanna}, title = {Latin Squares for Parallel Array Access}, journal ={IEEE Transactions on Parallel and Distributed Systems}, volume = {4}, number = {4}, issn = {10459219}, year = {1993}, pages = {361370}, doi = {http://doi.ieeecomputersociety.org/10.1109/71.219753}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Parallel and Distributed Systems TI  Latin Squares for Parallel Array Access IS  4 SN  10459219 SP361 EP370 EPD  361370 A1  K. Kim, A1  V.K. Prasanna, PY  1993 KW  Index Termsparallel array access; parallel memory system; perfect latin squares; skewing functions;conflict free access; skewing scheme; selfrouting Benes networks; multiprocessorinterconnection networks; shared memory systems; storage management VL  4 JA  IEEE Transactions on Parallel and Distributed Systems ER   
A parallel memory system for efficient parallel array access using perfect latin squares asskewing functions is discussed. Simple construction methods for building perfect latinsquares are presented. The resulting skewing scheme provides conflict free access toseveral important subsets of an array. The address generation can be performed inconstant time with simple circuitry. The skewing scheme can provide constant timeaccess to rows, columns, diagonals, and N/sup 1/2/*N/sup 1/2/ subarrays of an N*Narray with maximum memory utilization. Selfrouting Benes networks can be used torealize the permutations needed between the processing elements and the memorymodules. Two skewing schemes that provide conflict free access to threedimensionalarrays are also discussed. Combined with selfrouting Benes networks, these schemesprovide efficient access to frequently used subsets of threedimensional arrays.
[1] M. Balakrishnan, R. Jain, and C. S. Raghavendra, "On array storage for conflictfree memory access for parallel processors," inProc. Int. Conf. Parallel Processing, vol. 1, 1988, pp. 103107.
[2] K. E. Batcher, "The multidimensional access memory in STRAN,"IEEE Trans. Comput., vol. C26, pp. 174177, 1977.
[3] V. E. Benes,Mathematical Theory of Connecting Networks and Telephone Traffic. New York: Academic, 1965.
[4] R. Boppana and C. S. Raghavendra, "On self routine in Benes and shuffle exchange networks," inProc. Int. Conf. Parallel Processing, vol. 1, 1988, pp. 196200.
[5] R. Boppana and C. S. Raghavendra, "Selfrouting schemes in parallel memory access," manuscript, Dep. EESystems, Univ. Southern California, Nov. 1989.
[6] P. Budnik and D. J. Kuck, "The organization and use of parallel memories,"IEEE Trans. Comput., vol. C20, pp. 15661569, 1971.
[7] A. Deb, "Conflictfree access of arraysA counter example,"Inform. Processing Lett., vol. 10, no. 1, pp. 20, 1980.
[8] A. Deb, "MultiskewingA novel technique for optimal parallel memory access," Tech. Rep. 9004, Dep. Comput. Sci., Memorial Univ. of Newfoundland, 1990.
[9] T. A. Defanti, M. D. Brown, and B. H. McCormick, "Visualization: Expanding scientific and engineering research opportunities,"IEEE Comput. Mag., pp. 1225, Aug. 1989.
[10] J. Denes and A. D. Keedwell,Latin Squares and Their Applications. New York: Academic, 1974.
[11] J. M. Frailong, W. Jalby, and J. Lenfant, "XORschemes: A flexible data organization in parallel memories," inProc. Int. Conf. Parallel Processing, 1985, pp. 276283.
[12] E. Gergely, "A simple method for constructing doubly diagonalized latin squares,"J. Combinatorial Theory, A 16, pp. 266272, 1974.
[13] D. T. Harper III and D. Linebarger, "A dynamic storage scheme for conflictfree vector access," inProc. Int. Symp. Comput. Architecture, 1989.
[14] F. K. Hwang, "Crisscross latin squares,"J. Combinatorial Theory, A 27, pp. 371375, 1979.
[15] K. Heinrich, K. Kim, and V. K. Prasanna Kumar, "Perfect latin squares,"Discrete Appl. Math., 37/38, pp. 281286, 1992.
[16] K. Kim and V. K. Kumar, "Perfect Latin square and parallel array access," inProc. 16th Annu. Int. Symp. Comput. Architecture, May 1989, pp. 372379.
[17] D. J. Kuck, "ILLIAC IV software and application programming,"IEEE Trans. Comput., vol. C17, pp. 758770, 1968.
[18] D. H. Lawrie, "Access and alignment of data in an array processor,"IEEE Trans. Comput., vol. C24, pp. 11451155, 1975.
[19] D. H. Lawrie and C. R. Vora, "The prime memory system for array access,"IEEE Trans. Comput., vol. C31, pp. 435442, 1982.
[20] D. Lee, "Scrambled storage for parallel memory systems," inProc. 15th Ann. Int. Symp. Computer Arch., May 1988.
[21] J. Lenfant, "Parallel permutations of data: A Benes network control algorithm for frequently used permutations,"IEEE Trans. Comput., vol. C27, pp. 637647, 1978.
[22] M. B. Long, K. Lyons, and J. K. Lam, "Acquisition and representation of 2D and 3D data from turbulent flows and flames,"IEEE Comput. Mag., pp. 3945, Aug. 1989.
[23] O. Monga and R. Deriche, "3D edge detection using recursive filtering. Application to scanner images," inIEEE Comput. Soc. Conf. Vision and Pattern Recognit., San Diego, CA, June 1989.
[24] D. Nassimi and S. Sahni, "A selfrouting Benes network and parallel permutation algorithms,"IEEE Trans. Comput., vol. C30, pp. 332340, 1981.
[25] C. S. Raghavendra and R. Boppana, "On methods for fast and efficient parallel memory access," inProc. Int. Conf. Parallel Processing, vol. 1, 1990, pp. 7683.
[26] S. J. Riederer, "Recent advances in magnetic resonance imaging,"Proc. IEEE, pp. 10951105, Sept. 1988.
[27] H. D. Shapiro, "Theoretical limitations on the efficient use of parallel memories,"IEEE Trans. Comput., vol. C27, pp. 421428, 1978.
[28] H. Shirakawa and T. Kumagai, "An organization of a threedimensional access memory," inProc. Int. Conf. Parallel Processing, 1980, pp. 137138.
[29] D. C. V. Voorhis and T. H. Morrin, "Memory systems for image processing,"IEEE Trans. Comput., vol. C27, pp. 113125, 1978.
[30] H. Wijshoff and J. van Leeuwen, "On linear skewing schemes anddordered vectors,"IEEE Trans. Comput., vol. C36, no. 2, pp. 233239, Feb. 1987.