
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Y. Zhu, M. Ahuja, "On Job Scheduling on a Hypercube," IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 1, pp. 6269, January, 1993.  
BibTex  x  
@article{ 10.1109/71.205653, author = {Y. Zhu and M. Ahuja}, title = {On Job Scheduling on a Hypercube}, journal ={IEEE Transactions on Parallel and Distributed Systems}, volume = {4}, number = {1}, issn = {10459219}, year = {1993}, pages = {6269}, doi = {http://doi.ieeecomputersociety.org/10.1109/71.205653}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Parallel and Distributed Systems TI  On Job Scheduling on a Hypercube IS  1 SN  10459219 SP62 EP69 EPD  6269 A1  Y. Zhu, A1  M. Ahuja, PY  1993 KW  Index TermsLDF algorithm; job scheduling; hypercube; job preemption; minimum finish time schedule; NPcomplete; list scheduling algorithm; absolute bound; lower bound; scheduling algorithms; computational complexity; distributed algorithms; hypercube networks; scheduling VL  4 JA  IEEE Transactions on Parallel and Distributed Systems ER   
The problem of scheduling n independent jobs on an mdimensional hypercube system to minimize the finish time is studied. Each job J/sub i/, where 1>or=i>or=n, is associated with a dimension d/sub i/ and a processing time t/sub i/, meaning that J/sub i/ needs a d/sub i/dimensional subcube for t/sub i/ units of time. When job preemption is allowed, an O(n/sup 2/ log/sup 2/ n) time algorithm which can generate a minimum finish time schedule with at most min(n2,2/sup m/1) preemptions is obtained. When job preemption is not allowed, the problem is NPcomplete. It is shown that a simple list scheduling algorithm called LDF can perform asymptotically optimally and has an absolute bound no worse than 21/2/sup m/. For the absolute bound, it is also shown that there is a lower bound (1+ square root 6)/2 approximately=1.7247 for a class of scheduling algorithms including LDF.
[1] M. Ahuja and Y. Zhu, "AnO(nlogn) feasibility algorithm for preemptive scheduling ofnindependent jobs on a hypercube,"Inform. Processing Lett., pp. 711, 1990.
[2] B. S. Baker, E. G. Jr. Coffman, and R. L. Rivest, "Orthogonal packings in two dimensions,"SIAM J. Comput., vol. 9, pp. 846855, 1980.
[3] D. J. Brown, B. S. Baker, and H. P. Katseff, "Lower bounds for online twodimensional packing algorithms,"Acta Informatica, vol. 18, pp. 207225, 1982.
[4] G. I. Chen and T. H. Lai, "Scheduling independent jobs on hypercubes," inProc. 5th Symp. Theoret. Aspects Comput. Sci., LNCS 294, 1988, pp. 273280.
[5] G. I. Chen and T. H. Lai, "Preemptive scheduling of independent jobs on a hypercube,"Inform. Processing Lett., vol. 28, pp. 201206, 1988.
[6] M.S. Chen and K. G. Shin, "Processor allocation in anNcube multiprocessorusing Gray codes,"IEEE Trans. Comput., vol. C36, no. 12, pp. 13961407, Dec. 1987.
[7] E. G. Jr. Coffman, Ed.,Computer and Job Shop Scheduling Theory.New York: Wiley, 1976.
[8] E. G. Jr. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan, "Performance bounds for leveloriented twodimensional packing algorithms,"SIAM J. Comput., vol. 9, pp. 808826, 1980.
[9] E. G. Jr. Coffman, M. R. Garey, and D. S. Johnson, "Approximation algorithms for binpackingAn updated survey," inAlgorithm Design for Computer System Design, G. Ausiello, M. Lucertini, and P. Serafini, Eds. New York: SpringerVerlag, 1984, pp. 49106.
[10] E. G. Jr. Coffman, M. R. Garey, and D. S. Johnson, "Bin packing with divisible item sizes,"J. Complexity, no. 3, pp. 406428, 1987.
[11] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide to Theory of NPCompleteness. San Francisco, CA: Freeman, 1979.
[12] R. L. Graham, "Bounds on multiprocessing timing anomalies,"SIAM J. Appl. Math., vol. 17, pp. 416429, 1969.
[13] J. P. Hayeset al., "A microprocessorbased hypercube supercomputer,"IEEE Micro, vol. 6, pp. 617, Oct. 1986.
[14] W. D. Hills,The Connection Machine.Cambridge, MA: M.I.T. Press, 1985.
[15] E. Horowitz and S. Sahni,Fundamentals of Data Structures.Potomac, MD: Computer Science Press, 1976.
[16] D. S. Johnson, "Fast algorithms for bin packing,"J. Comput. Syst. Sci., vol. 8, pp. 272314, 1974.
[17] D. G. Kafura and V. Y. Shen, "Task scheduling on a multiprocessor system with independent memories,"SIAM J. Comput., vol. 6, pp. 167187, 1977.
[18] C. Martel, "Preemptive scheduling to minimize maximum completion time on uniform processors with memory constraints,"Oper. Res., vol. 33, no. 6, pp. 13601380, 1985.
[19] N. Megiddo, "Combinatorial optimization with rational objective functions,"Math. Oper. Res., vol. 4, pp. 414424, 1979.
[20] J. C. Peterson, J. O. Tuazon, D. Lieberman, and M. Pneil, "The Mark III hypercubeensemble concurrent computer," inProc. Int. Conf. Parallel Processing, 1985, pp. 7175.
[21] C. L. Seitz, "The Cosmic Cube,"Commun. ACM, pp. 2233, Jan. 1985.
[22] J. D. Ullman, "NPcomplete scheduling problems,"J. Comput. Syst. Sci., vol. 10, pp. 384393, 1975.
[23] S. Sahni, "Preemptive scheduling with due dates,"Oper. Res., vol. 27, no. 5, pp. 925934, 1979.
[24] Y. Zhu and M. Ahuja, "Job scheduling on a hypercube," inProc. 10th Int. Conf. Distributed Comput. Syst., 1990, pp. 510517.
[25] Y. Zhu and M. Ahuja, "Preemptive job scheduling on a hypercube," inProc. Int. Conf. Parallel Processing, vol. I, 1990, pp. 301304.