
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
S. Olariu, Z. Wen, "Optimal Parallel Initialization Algorithms for a Class of Priority Queues," IEEE Transactions on Parallel and Distributed Systems, vol. 2, no. 4, pp. 423429, October, 1991.  
BibTex  x  
@article{ 10.1109/71.97899, author = {S. Olariu and Z. Wen}, title = {Optimal Parallel Initialization Algorithms for a Class of Priority Queues}, journal ={IEEE Transactions on Parallel and Distributed Systems}, volume = {2}, number = {4}, issn = {10459219}, year = {1991}, pages = {423429}, doi = {http://doi.ieeecomputersociety.org/10.1109/71.97899}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Parallel and Distributed Systems TI  Optimal Parallel Initialization Algorithms for a Class of Priority Queues IS  4 SN  10459219 SP423 EP429 EPD  423429 A1  S. Olariu, A1  Z. Wen, PY  1991 KW  Index Termsparallel initialization algorithms; adaptive parallel algorithm; priority queue structure;nelement array; parallel construction algorithms; heaplike structures; doubleendedpriority queues; minmax heaps; deeps; minmaxpair heaps; processors;exclusivereadexclusivewrite parallel randomaccess machine; computationalcomplexity; data structures; parallel algorithms; queueing theory VL  2 JA  IEEE Transactions on Parallel and Distributed Systems ER   
An adaptive parallel algorithm for inducing a priority queue structure on an nelement array is presented. The algorithm is extended to provide optimal parallel construction algorithms for three other heaplike structures useful in implementing doubleended priority queues, namely minmax heaps, deeps, and minmaxpair heaps. It is shown that an nelement array can be made into a heap, a deap, a minmax heap, or a minmaxpairheap in O(log n+(n/p)) time using no more than n/log n processors, in the exclusivereadexclusivewrite parallel randomaccess machine model.
[1] M. D. Atkinson, J. R. Sack, N. Santoro, and T. Strothotte, "Minmax heaps and generalized priority queues,"Commun. ACM, vol. 29, pp. 9961000, 1986.
[2] S. Baase,Computer AlgorithmsAn Introduction to Design and Analysis. Reading, MA: AddisonWesley, 1988.
[3] J. Biswas and J. C. Browne, "Simultaneous update of priority structures," inProc. Int. Conf. Parallel Processing, 1987, pp. 124131.
[4] S. Carlsson, "The deapA double ended heap to implement double ended priority queues,"Inform. Processing Lett., vol. 26, pp. 3336, 1987.
[5] S. Carlsson, J. Chen, and T. Strothotte, "A note on the construction of the data structure 'deap',"Inform. Processing Lett., vol. 31, pp. 315317, 1989.
[6] E. G. Coffman and M. Hofri, "On scanning disks and the analysis of their steady state behavior," inProc. Conf. Measurement, Modelling Evaluating Com. Syst., New York, NY, Oct. 1982.
[7] N. Deo and S. Prasad, "Parallel heap," inProc. IEEE Int. Conf. Parallel Processing, 1990, pp. III169III172.
[8] Z. Fan and K. H. Cheng, "A simultaneous access priority queue," inProc. Int. Conf. Parallel Processing, 1989, pp. I95,I98.
[9] M. Hofri, "Disk scheduling: FCFS versus SSTF revisited,"Commun. ACM, vol. 23, no. 11, pp. 645653, Nov. 1980.
[10] G. H. Gonnet, "Heaps applied to eventdriven mechanisms,"Commun. ACM, vol. 9, pp. 417418, 1976.
[11] G. H. Gonnet and I. Munro, "Heaps on heaps,"SIAM J. Comput., vol. 15, pp. 964971, 1986.
[12] A. Hasham and J. R. Sack, "Bounds for minmax heaps,"BIT, vol. 27 pp. 315323, 1987.
[13] K. Hwang and F. A. Briggs,Computer Architecture and Parallel Processing. New York: McGrawHill, 1984.
[14] D. W. Jones, "Concurrent operations on priority queues,"Commun. ACM, vol. 32, pp. 132137, 1989.
[15] C. J. H. McDiarmid and B. A. Reed, "Building heaps fast,"J. Algorithms, vol. 10, pp. 351365, 1989.
[16] O. Nevalainen and J. Teuhola, "Priority queue administration by sublist index,"The Comput. J., vol. 22, pp. 220224, 1977.
[17] S. Olariu and Z. Wen, "The mmp heap and its variations," Tech. Rep. TR8933, Dep. Comput. Sci., Old Dominion Univ., Sept. 1989.
[18] S. Olariu and Z. Wen, "Fast parallel heap algorithms," Tech. Rep. TR9012, Dep. Comput. Sci., Old Dominion Univ., Feb. 1990.
[19] M. C. Pinotti and G. Pucci, "Parallel priority queue," inProc. 28th Annu. Allerton Conf. Commun., Contr., Comput., 1990, to be published.
[20] M. Quinn,Designing Efficient Algorithms for Parallel Computers. New York: McGrawHill, 1987.
[21] M. J. Quinn and N. Deo, "Parallel graph algorithms,"ACM Comput. Surveys, vol. 16, pp. 319348, Sept. 1984.
[22] V. N. Rao and V. Kumar, "Concurrent access of priority queues,"IEEE Trans. Comput.vol. 37, pp. 16571665, 1988.
[23] D. S. Richards and J. S. Salowe, "Stacks, queues, and dequeues with orderstatistic operations," inProc. 28th Annu. Allerton Conf. Commun., Contr., Comput., 1990, to be published.
[24] U. Vishkin, "Synchronous parallel computationA survey," TR 71, Dep. Comput. Sci., Courant Institute, N.Y.U., 1983.
[25] Y. B. Yoo, "Parallel processing for some network optimization problems," Ph.D. dissertation, Dep. Comput. Sci., Washington State Univ., Pullman, WA, 1983.