This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Parallel Implementation of Multiple Model Tracking Algorithms
April 1991 (vol. 2 no. 2)
pp. 242-252

The implementations of the Viterbi algorithm (VA) and the interacting multiple model(IMM) algorithm on a shared-bus and shared-memory multiple-input multiple-data (MIMD) multiprocessor are discussed. The computational complexity as well as the speedup and efficiency are examined in detail. It is shown that the computational complexity of the parallel implementation of these algorithms is about the same in both memory space and processing time categories. Efficiency with P processors is about 1-1/P for small P and is expected to be relatively high for large P, especially when many filters and large state and measurement vectors are considered.

[1] A. Averbuch, S. Itzikowitz, and S. Kapon, "Radar Target Tracking-Viterbi vs. IMM." to appear inIEEE Trans. AES.
[2] Y. Bar-Shalom and T. E. Fortman,Tracking and Data Association.New York: Academic, 1986.
[3] H. A. P. Blom, "An efficient filter for abruptly changing systems," inProc. 23rd Conf. Decision Contr., Las Vegas, NV, Dec. 1984.
[4] H. A. P. Blom, "Overlooked potential of systems with Markovian coefficients," inProc. 25th Conf. Decision Contr., Athens, Greece, Dec. 1986.
[5] H. A. P. Blom and Y. Bar-Shalom, "The interacting multiple model algorithm with Markovian switching coefficients,"IEEE Trans. Automat. Contr., vol. AC-33, no. 8, pp. 780-783, Aug. 1988.
[6] C. B. Chang and M. Athans, "State estimation for discrete systems with switching parameters,"IEEE Trans. Aerosp. Electron. Syst., vol. AES-14, no. 3, pp. 418-424, May 1978.
[7] C. B. Chang and K. P. Dunn, "On GLR detection estimation scheme of unexpected inputs in linear systems."IEEE Trans. Automat. Contr., vol. AC-24, no. 3, pp. 499-501, 1979.
[8] G.D. Forney, Jr., "The Viterbi algorithm,"Proc. IEEE, vol. 61, no. 3, Mar. 1973.
[9] E. Gabber, "Parallel programming using the MMX operating system and its processor," Tech. Rep. 107/88, Tel Aviv Univ., May 1988.
[10] N.H. Gholson and R. L. Moose, "Maneuvering target tracking using adaptive state estimation,"IEEE Trans. Aerosp. Electron. Syst., vol. AES-13, no. 3, pp. 310-317, May 1977.
[11] E. K. B. Lee and S. Haykin, "Parallel implementation of the tracking Kalman filter," inProc. ICASSP 88, pp. 2092-2094.
[12] W. J. Lemanski, "Parallel Ada implementation of a multiple model Kalman filter tracking system: A software engineering approach," Master Thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, Mar. 1989.
[13] P. Mookerjee, L. Campo, and Y. Bar-Shalom, "Estimation in systems with semi-markov switching model," inProc. 26th Conf. Decision Contr., Los Angeles, CA, 1987.
[14] D. R. O'Hallarin and R. S. Baheti, "Parallel implementation of a Kalman filter on the Warp computer," inProc. ICPP 88, vol. 3, pp. 108-111.
[15] L. R. Rabiner and B. H. Juang, "An introduction to hidden Markov models,"IEEE ASSP Mag., pp. 4-16, Jun. 1986.
[16] K. Schnepper, "A comparison of GLR and multiple model filters for target tracking problem, " inProc. 25th Conf. Decision Contr., Athens, Dec. 1986.
[17] J. K. Tugnait, "Detection and estimation for abruptly changing systems,"Automatica, vol. 18, no. 5, pp. 607-615, 1982.
[18] J. K. Tugnait and A. H. Haddad, "A detection estimation scheme for state estimation in switching environments,"Automatica, vol. 15, pp. 477-481, 1979.
[19] A. S. Willsky, "Detection of abrupt changes in dynamic systems" in Detection ofAbrupt Changes in Signals and Dynamical Systems, Bassenville and Beneviste, Eds. Heidelberg, Germany: Springer-Verlag, 1985.

Index Terms:
Index Termsinteracting multiple model algorithm; parallel algorithms; multiple model tracking; Viterbi algorithm; MIMD; computational complexity; parallel implementation; computational complexity; computerised signal processing; parallel algorithms
Citation:
A. Averbuch, S. Itzikowitz, T. Kapon, "Parallel Implementation of Multiple Model Tracking Algorithms," IEEE Transactions on Parallel and Distributed Systems, vol. 2, no. 2, pp. 242-252, April 1991, doi:10.1109/71.89069
Usage of this product signifies your acceptance of the Terms of Use.