
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
S. Ranka, S. Sahni, "Odd Even Shifts in SIMD Hypercubes," IEEE Transactions on Parallel and Distributed Systems, vol. 1, no. 1, pp. 7782, January, 1990.  
BibTex  x  
@article{ 10.1109/71.80126, author = {S. Ranka and S. Sahni}, title = {Odd Even Shifts in SIMD Hypercubes}, journal ={IEEE Transactions on Parallel and Distributed Systems}, volume = {1}, number = {1}, issn = {10459219}, year = {1990}, pages = {7782}, doi = {http://doi.ieeecomputersociety.org/10.1109/71.80126}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Parallel and Distributed Systems TI  Odd Even Shifts in SIMD Hypercubes IS  1 SN  10459219 SP77 EP82 EPD  7782 A1  S. Ranka, A1  S. Sahni, PY  1990 KW  Index Termsimage template matching; odd even shifts; odd length circular shifts; odd shifts; data routing; parallel processing; parallel algorithms; lineartime algorithm; twodimensional convolution; N/sup 2/ processor SIMD hypercube; complexity; computational complexity; computer vision; computerised pattern recognition; computerised picture processing; parallel algorithms VL  1 JA  IEEE Transactions on Parallel and Distributed Systems ER   
A lineartime algorithm is developed to perform all odd (even) length circular shifts of data in an SIMD (singleinstructionstream, multipledatastream) hypercube. As an application, the algorithm is used to obtain an O(M/sup 2/+log N) time and O(1) memory per processor algorithm to compute the twodimensional convolution of an N*N image and an M*M template on an N/sup 2/ processor SIMD hypercube. This improves the previous best complexity of O(M/sup 2/ log M+log N).
[1] D. H. Ballard and C. M. Brown,Computer Vision. Englewood Cliffs, NJ: PrenticeHall, 1982.
[2] E. Dekel, D. Nassimi, and S. Sahni, "Parallel matrix and graph algorithms,"SIAM J. Computing, pp. 657675, 1981.
[3] Z. Fang, X. Li, and L. M. Ni, "Parallel algorithms for image template matching on hypercube SIMD computers,"IEEE CAPAMI Workshop, 1985, pp. 3340.
[4] Z. Fang and L. M. Ni, "Parallel algorithms for 2D convolution,"Internat. Conf. Parallel Process., pp. 262269, 1986.
[5] S. L. Johnsson, "Communication efficient basic linear algebra computations on hypercube architectures,"J. Parallel Distributed Comput., pp. 133172, 1987.
[6] S. L. Johnsson and C. Ho, "Optimum broadcasting and personalized communication in hypercubes," Yale Univ. Tech. Rep., DCSTR610, 1987.
[7] D. Nassimi and S. Sahni, "Data broadcasting in SIMD computers,"IEEE Trans. Comput., vol. C30, pp. 101107, Feb. 1981.
[8] D. Nassimi and S. Sahni, "Parallel permutation and sorting algorithms and a new generalized connection network,"J. ACM, vol. 29, no. 3, pp. 642667, 1982.
[9] D. Nassimi and S. Sahni, "Optimal BPC permutations on a cube connected computer,"IEEE Trans. Comput., vol. C31, pp. 338341, Apr. 1982.
[10] V. K. Prasanna Kumar and V. Krishnan, "Efficient image template matching on SIMD hypercube machines,"Int. Conf. Parallel Process., pp. 765771, 1987.
[11] S. Ranka and S. Sahni, "Image template matching on SIMD hypercube multicomputers, " inProc. 1988 Internat. Conf. Parallel Process., Vol. III, Algorithms and Applications. Penn State Univ. Press, pp. 8491.
[12] A. Rosenfeld and A. Kak,Digital Picture Processing, New York: Academic, 1976.
[13] Y. Saad and M. H. Schultz, "Data communication in hypercubes,"J. Parallel Distributed Comput., vol. 6, pp. 115135, 1989.