The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.02 - Feb. (2013 vol.62)
pp: 411-415
Aleksandar Radonjic , University of Novi Sad, Novi Sad
Vladimir Vujicic , University of Novi Sad, Novi Sad
ABSTRACT
This paper presents a class of integer codes that can correct any burst of length \le l within a b-bit byte. Their main advantages lie in linear complexity of encoding and decoding procedures, as well as in the fact that a look-up table-based error control procedure requires relatively small memory resources.
INDEX TERMS
Fires, Decoding, Table lookup, Complexity theory, Encoding, Error correction, Hardware, error correction and detection, Integer codes, burst errors, error set
CITATION
Aleksandar Radonjic, Vladimir Vujicic, "Integer Codes Correcting Burst Errors within a Byte", IEEE Transactions on Computers, vol.62, no. 2, pp. 411-415, Feb. 2013, doi:10.1109/TC.2011.243
REFERENCES
[1] V.I. Levenshtein and A.J.H. Vinck, “Perfect (d, k)-Codes Capable of Correcting Single Peak Shifts,” IEEE Trans. Information Theory, vol. 39, no. 2, pp. 656-662, Mar. 1993.
[2] U. Tamm, “Splittings of Cyclic Groups and Perfect Shift Codes,” IEEE Trans. Information Theory, vol. 44, no. 5, pp. 2003-2009, Sept. 1998.
[3] A.J.H. Vinck and H. Morita, “Codes over the Ring of Integer Modulo m,” IEICE Trans. Fundamentals, vol. E81-A, no. 10, pp. 2013-2018, Oct. 1998.
[4] H. Kostadinov, H. Morita, and N. Manev, “Integer Codes Correcting Single Errors of Specific Types $(\pm e1, \pm e2,\ldots, s\pm es)$ ,” IEICE Trans. Fundamentals, vol. E86-A, no. 7, pp. 1843-1849, July 2003.
[5] H. Morita, A. Geyser, and A.J. van Wijngaarden, “On Integer Codes Capable of Correcting Single Errors in Two-Dimensional Lattices,” Proc. IEEE Int'l Symp. Information Theory (ISIT '03), p. 16, June/July 2003.
[6] H. Kostadinov, H. Morita, and N. Manev, “On Coded Modulation Based on Finite Rings of Integers,” Proc. IEEE Int'l Symp. Information Theory (ISIT), p. 156, June-July 2003.
[7] U. Tamm, “On Perfect Integer Codes,” Proc. IEEE Int'l Symp. Information Theory (ISIT '05), pp. 117-120, Sept. 2005.
[8] A. Radonjic and V. Vujicic, “Integer SEC-DED Codes for Low Power Communications,” Information Processing Letters, vol. 110, nos. 12/13, pp. 518-520, June 2010.
[9] U. Tamm, “Reflections about a Single Checksum,” Proc. Third Int'l Conf. Arithmetic of Finite Fields (WAIFI '10), pp. 238-249, June 2010.
[10] W.W. Peterson and E.J. WeldonJr., Error-Correcting Codes, second ed. MIT Press, 1972.
[11] V. Krishnan, Probability and Random Processes. John Wiley & Sons, Inc., 2006.
[12] K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic Toolbox. Springer, 2008.
[13] D.C. Feldmeier, “Fast Software Implementation of Error Detection Codes,” IEEE/ACM Trans. Networking, vol. 3, no. 6, pp. 640-651, Dec. 1995.
[14] R. Blahut, Algebraic Codes for Data Transmission. Cambridge Univ. Press, 2003.
[15] M. Fossorier, “Universal Burst Error Correction,” Proc. IEEE Int'l Symp. Information Theory (ISIT '06), pp. 1969-1973, July 2006.
[16] G. Umanesan and E. Fujiwara, “Parallel Decoding Cyclic Burst Error Correcting Codes,” IEEE Trans. Computers, vol. 54, no. 1, pp. 87-92, Jan. 2004.
[17] W. Stallings, Computer Organization and Architecture: Designing for Performance, eighth ed. Prentice Hall, 2009.
[18] E. Fujiwara, K. Namba, and M. Kitakami, “Parallel Decoding for Burst Error Control Codes,” Electronics and Comm. in Japan, vol. 87, no. 1, pp. 38-48, Jan. 2004.
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool