This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
GPU Computing for Parallel Local Search Metaheuristic Algorithms
Jan. 2013 (vol. 62 no. 1)
pp. 173-185
The Van Luong, Lab. d'Inf. Fondamentale de Lille (LIFL), Univ. de Lille 1, Villeneuve d'Ascq, France
N. Melab, Lab. d'Inf. Fondamentale de Lille (LIFL), Univ. de Lille 1, Villeneuve d'Ascq, France
E. Talbi, Lab. d'Inf. Fondamentale de Lille (LIFL), Univ. de Lille 1, Villeneuve d'Ascq, France
Local search metaheuristics (LSMs) are efficient methods for solving complex problems in science and industry. They allow significantly to reduce the size of the search space to be explored and the search time. Nevertheless, the resolution time remains prohibitive when dealing with large problem instances. Therefore, the use of GPU-based massively parallel computing is a major complementary way to speed up the search. However, GPU computing for LSMs is rarely investigated in the literature. In this paper, we introduce a new guideline for the design and implementation of effective LSMs on GPU. Very efficient approaches are proposed for CPU-GPU data transfer optimization, thread control, mapping of neighboring solutions to GPU threads, and memory management. These approaches have been experimented using four well-known combinatorial and continuous optimization problems and four GPU configurations. Compared to a CPU-based execution, accelerations up to \times 80 are reported for the large combinatorial problems and up to \times 240 for a continuous problem. Finally, extensive experiments demonstrate the strong potential of GPU-based LSMs compared to cluster or grid-based parallel architectures.
Index Terms:
storage management,graphics processing units,optimisation,parallel processing,search problems,grid-based parallel architectures,parallel local search metaheuristic algorithms,LSM,GPU-based massively parallel computing,CPU-GPU data transfer optimization,thread control,memory management,continuous optimization problems,Graphics processing unit,Instruction sets,Encoding,Optimization,Computer architecture,Parallel processing,Search problems,performance evaluation,Parallel metaheuristics,local search metaheuristics,GPU computing
Citation:
The Van Luong, N. Melab, E. Talbi, "GPU Computing for Parallel Local Search Metaheuristic Algorithms," IEEE Transactions on Computers, vol. 62, no. 1, pp. 173-185, Jan. 2013, doi:10.1109/TC.2011.206
Usage of this product signifies your acceptance of the Terms of Use.