
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Pascal Giorgi, "On Polynomial Multiplication in Chebyshev Basis," IEEE Transactions on Computers, vol. 61, no. 6, pp. 780789, June, 2012.  
BibTex  x  
@article{ 10.1109/TC.2011.110, author = {Pascal Giorgi}, title = {On Polynomial Multiplication in Chebyshev Basis}, journal ={IEEE Transactions on Computers}, volume = {61}, number = {6}, issn = {00189340}, year = {2012}, pages = {780789}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2011.110}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  On Polynomial Multiplication in Chebyshev Basis IS  6 SN  00189340 SP780 EP789 EPD  780789 A1  Pascal Giorgi, PY  2012 KW  Theory of computation KW  computations on polynomials KW  arithmetic KW  polynomial multiplication KW  Chebyshev basis. VL  61 JA  IEEE Transactions on Computers ER   
[1] J.C. Mason and D.C. Handscomb, Chebyshev Polynomials. Chapman and Hall/CRC, 2002.
[2] J.P. Boyd, Chebyshev and Fourier Spectral Methods. Dover Publications, 2001.
[3] Z. Battles and L. Trefethen, “An Extension of Matlab to Continuous Fractions and Operators,” SIAM J. Scientific Computing, vol. 25, pp. 17431770, 2004.
[4] N. Brisebarre and M. Joldeş, “Chebyshev Interpolation PolynomialBased Tools for Rigorous Computing,” Proc. Int'l Symp. Symbolic and Algebraic Computation, pp. 147154, 2010.
[5] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers on Automata,” Doklady Akademii Nauk SSSR, vol. 145, no. 2, pp. 293294, 1962.
[6] A.L. Toom, “The Complexity of a Scheme of Functional Elements Realizing the Multiplication of Integers,” Soviet Math., vol. 3, pp. 714716, 1963.
[7] S.A. Cook, “On the Minimum Computation Time of Functions,” master's thesis, Harvard Univ., May 1966.
[8] J. Cooley and J. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series,” Math. of Computation, vol. 19, no. 90, pp. 297301, 1965.
[9] J. von zur Gathen and J. Gerhard, Modern Computer Algebra. Cambridge Univ. Press, 2003.
[10] R. Brent and P. Zimmermann, Modern Computer Arithmetic. Cambridge Univ. Press, http://www.loria.fr/zimmerma/mcamcacup0.5.3.pdf , Aug. 2010.
[11] D.G. Cantor and E. Kaltofen, “On Fast Multiplication of Polynomials over Arbitrary Algebras,” Acta Informatica, vol. 28, no. 7, pp. 693701, 1991.
[12] J.B. Lima, D. Panario, and Q. Wang, “A KaratsubaBased Algorithm for Polynomial Multiplication in Chebyshev Form,” IEEE Trans. Computers, vol. 59, no. 6, pp. 835841, June 2010.
[13] A. Bostan, B. Salvy, and E. Schost, “Power Series Composition and Change of Basis,” Proc. Int'l Symp. Symbolic and Algebraic Computation, pp. 269276, 2008.
[14] A. Bostan, B. Salvy, and E. Schost, “Fast Conversion Algorithms for Orthogonal Polynomials,” Linear Algebra and Its Applications, vol. 432, no. 1, pp. 249258, Jan. 2010.
[15] A. Schönhage and V. Strassen, “Schnelle Multiplikation Grosser Zahlen,” Computing, vol. 7, pp. 281292, 1971.
[16] S. Johnson and M. Frigo, “A Modified SplitRadix FFT with Fewer Arithmetic Operations,” IEEE Trans. Signal Processing, vol. 55, no. 1, pp. 111119, Jan. 2007.
[17] H. Sorensen, D. Jones, M. Heideman, and C. Burrus, “RealValued Fast Fourier Transform Algorithms,” IEEE Trans. Acoustics, Speech and Signal Processing, vol. ASSP35, no. 6, pp. 849863, June 1987.
[18] G. Baszenski and M. Tasche, “Fast Polynomial Multiplication and Convolution Related to the Discrete Cosine Transform,” Linear Algebra and Its Applications, vol. 252, nos. 13, pp. 125, 1997.
[19] S.C. Chan and K.L. Ho, “Direct Methods for Computing Discrete Sinusoidal Transforms,” Proc. IEE F Radar and Signal Processing, vol. 137, no. 6, pp. 433442, Dec. 1990.
[20] P. Giorgi, “On Polynomial Multiplication in Chebyshev Basis,” technical report, arxiv.org, http://arxiv.org/abs1009.4597, 2010.
[21] Intel 64 and IA32 Architectures Optimization Reference Manual, Intel Corp, http://www.intel.com/Assets/PDF/manual248966.pdf , 2011.
[22] D.R. Musser, G.J. Derge, and A. Saini, The STL Tutorial and Reference Guide: C++ Programming with the Standard Template Library. Addison Wesley Longman Publishing Co., Inc., 2002.
[23] M. Püschel, J.M.F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W. Johnson, and N. Rizzolo, “SPIRAL: Code Generation for DSP Transforms,” Proc. IEEE, Special Issue on Program Generation, Optimization, and Platform Adaptation, vol. 93, no. 2, pp. 232275, Feb. 2005.
[24] M. Frigo and S.G. Johnson, “The Design and Implementation of FFTW3,” Proc. IEEE, Special Issue on Program Generation, Optimization, and Platform Adaptation, vol. 93, no. 2, pp. 216231, Feb. 2005.
[25] N.J. Higham, Accuracy and Stability of Numerical Algorithms. Soc. for Industrial and Applied Math., 2002.
[26] R. Lidl and H. Niederreiter, Finite Fields, second ed. Cambridge Univ. Press, 1997.
[27] A. Hasan and C. Negre, “Low Space Complexity Multiplication over Binary Fields with Dickson Polynomial Representation,” IEEE Trans. Computers, vol. 60, no. 4, pp. 602607, Apr. 2010.
[28] J.B. Lima, D. Panario, and R. Campello de Souza, “PublicKey Encryption Based on Chebyshev Polynomials over gf(q),” Information Processing Letters, vol. 11, no. 2, pp. 5156, 2010.
[29] D. Harvey and D.S. Roche, “An InPlace Truncated Fourier Transform and Applications to Polynomial Multiplication,” Proc. Int'l Symp. Symbolic and Algebraic Computation, pp. 325329, 2010.