
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
Ashkan Hosseinzadeh Namin, Huapeng Wu, Majid Ahmadi, "HighSpeed Architectures for Multiplication Using Reordered Normal Basis," IEEE Transactions on Computers, vol. 61, no. 2, pp. 164172, February, 2012.  
BibTex  x  
@article{ 10.1109/TC.2010.218, author = {Ashkan Hosseinzadeh Namin and Huapeng Wu and Majid Ahmadi}, title = {HighSpeed Architectures for Multiplication Using Reordered Normal Basis}, journal ={IEEE Transactions on Computers}, volume = {61}, number = {2}, issn = {00189340}, year = {2012}, pages = {164172}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2010.218}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  HighSpeed Architectures for Multiplication Using Reordered Normal Basis IS  2 SN  00189340 SP164 EP172 EPD  164172 A1  Ashkan Hosseinzadeh Namin, A1  Huapeng Wu, A1  Majid Ahmadi, PY  2012 KW  Finite field KW  binary field KW  optimal normal basis type II KW  reordered normal basis KW  multiplication algorithm KW  multiplier KW  hardware. VL  61 JA  IEEE Transactions on Computers ER   
[1] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, http://www.cacr.math.uwaterloo.caecc/, Dec. 2003.
[2] Nat'l Inst. of Standards and Technology, Digital Signature Standards, FIPS Publication, 1863, June 2009.
[3] R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, second ed., Cambridge Univ. Press, 1997.
[4] IEEE Std 13632000, IEEE Standard Specifications for PublicKey Cryptography, Jan. 2000.
[5] Am. Nat'l Standard Inst., "Public Key Cryptography for the Financial Services Industry, The Elliptic Curve Digital Signature Algorithm (ECDSA)," ANSI X9.62, 2005.
[6] A.H. Namin, H. Wu, and M. Ahmadi, "A High Speed Word Level Finite Field Multiplier Using Reordered Normal Basis," Proc. IEEE Int'l Symp. Circuits and Systems (ISCAS), pp. 32783281, May 2008.
[7] S. Gao, J. von zur Gathen, D. Panario, and V. Shoup, "Algorithms for Exponentiation in Finite Fields," J. Symbolic Computation, vol. 29, pp. 879889, 2000.
[8] G.B. Agnew, R.C. Mullin, and S. Vanstone, "Fast Exponentiation in $GF({2^n})$ ," Proc. Workshop Theory and Application of Cryptographic Techniques, Advances in Cryptology (Eurocrypt '88), C.G. Gunther, ed., pp. 251255, 1998.
[9] R.C. Mullin and R.M. Wilson, "Optimal Normal Bases in GF($p^n$ )," Discrete Applied Math., vol. 22, pp. 149161, 1989.
[10] S. Gao and S. Vanstone, "On Orders of Optimal Normal Basis Generators," Math. Computation, vol. 64, no. 2, pp. 12271233, 1995.
[11] H. Wu, M.A. Hasan, I.F. Blake, and S. Gao, "Finite Field Multiplier Using Redundant Representation," IEEE Trans. Computers, vol. 51, no. 11, pp. 13061316, Nov. 2002.
[12] J.L. Massey and J.K. Omura, "Computational Method and Apparatus for Finite Field Arithmetic," US Patent 4587627, 1984.
[13] G.B. Agnew, R.C. Mullin, I.M. Onyszchuck, and S.A. Vanstone, "An Implementation for a Fast PublicKey Cryptosystem," J. Cryptology, vol. 3, pp. 6379, 1991.
[14] T. Beth and Gollman, "Algorithm Engineering for Public Key Algorithms," IEEE J. Selected Areas in Comm., vol. 7, no. 4, pp. 458465, May 1989.
[15] M. Feng, "A VLSI Architecture for Fast Inversion in $GF(2^m)$ ," IEEE Trans. Computers, vol. 38, no. 10, pp. 13831386, Oct. 1989.
[16] W. Geiselmann and D. Gollmann, "Symmetry and Duality in Normal Basis Multiplication," Proc. Applied Algebra, Algebraic Algorithms, and Error Correcting Codes Symp., pp. 230238, July 1998.
[17] L. Gao and G.E. Sobelman, "Improved VLSI Designs for Multiplication and Inversion in $GF(2^M)$ over Normal Bases," Proc. 13th Ann. IEEE Int'l ASIC/SOC Conf., pp. 97101, 2000.
[18] C.C. Wang, T.K. Truong, H.M. Shao, L.J. Deutsch, J.K. Omura, and I.S. Reed, "VLSI Architectures for Computing Multiplications and Inverses in $GF(2^m)$ ," IEEE Trans. Computers, vol. 34, no. 8, pp. 709716, Aug. 1985.
[19] A. ReyhaniMasoleh and M.A. Hasan, "A New Construction of MasseyOmura Parallel Multiplier over $GF(2^m)$ ," IEEE Trans. Computers, vol. 51, no. 5, pp. 511520, May 2002.
[20] C.K. Koc and B. Sunar, "LowComplexity BitParallel Canonical and Normal Basis Multipliers for a Class of Finite Fields," IEEE Trans. Computers, vol. 47, no. 3, pp. 353356, Mar. 1998.
[21] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, "A Modified MasseyOmura Parallel Multiplier for a Class of Finite Fields," IEEE Trans. Computers, vol. 42, no. 10, pp. 12781280, Oct. 1993.
[22] H. Wu and M.A. Hasan, "Low Complexity BitParallel Multipliers for a Class of Finite Fields," IEEE Trans. Computers, vol. 47, no. 8, pp. 883887, Aug. 1998.
[23] A.H. Namin, H. Wu, and M. Ahmadi, "Comb Architectures for Finite Field Multiplication in $F_{2^m}$ ," IEEE Trans. Computers, vol. 56, no. 7, pp. 909916, July 2007.
[24] A. ReyhaniMasoleh and M.A. Hasan, "Efficient DigitSerial Normal Basis Multipliers over GF$(2^m)$ ," IEEE Trans. Computers, Special Issue on Cryptographic Hardware and Embedded Systems, vol. 52, no. 4, pp. 428439, Apr. 2003.
[25] A. ReyhaniMasoleh and M.A. Hasan, "Low Complexity WordLevel Sequential Normal Basis Multipliers," IEEE Trans. Computers, vol. 54, no. 2, pp. 98110, Feb. 2005.
[26] A. ReyhaniMasoleh, "Efficient Algorithms and Architectures for Field Multiplication Using Gaussian Normal Bases," IEEE Trans. Computers, vol. 55, no. 1, pp. 3447, Jan. 2006.
[27] J.P. Uyemura, CMOS Logic Circuit Design. Kluwer Academic Publishers, Feb. 1999.
[28] 0.18μm TSMC CMOS Technology, Standard Cell Library, Canadian Microelectronics Corporation, Sept. 1999.
[29] A. Hosseinzaded, H. Wu, and M. Ahmadi, "A HighSpeed Word Level Finite Field Multiplier in ${\hbox{\rlap{I}\kern 2.0pt{\hbox{F}}}}_{2^m}$ Using Redundant Representation," IEEE Trans. Very Large Scale Integration, vol. 17, no. 10, pp. 15461550, Oct. 2009.