
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
David Eppstein, Michael T. Goodrich, "Succinct Greedy Geometric Routing Using Hyperbolic Geometry," IEEE Transactions on Computers, vol. 60, no. 11, pp. 15711580, November, 2011.  
BibTex  x  
@article{ 10.1109/TC.2010.257, author = {David Eppstein and Michael T. Goodrich}, title = {Succinct Greedy Geometric Routing Using Hyperbolic Geometry}, journal ={IEEE Transactions on Computers}, volume = {60}, number = {11}, issn = {00189340}, year = {2011}, pages = {15711580}, doi = {http://doi.ieeecomputersociety.org/10.1109/TC.2010.257}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Computers TI  Succinct Greedy Geometric Routing Using Hyperbolic Geometry IS  11 SN  00189340 SP1571 EP1580 EPD  15711580 A1  David Eppstein, A1  Michael T. Goodrich, PY  2011 KW  Greedy routing KW  hyperbolic geometry KW  autocratic weightbalanced trees KW  dyadic tree metric space. VL  60 JA  IEEE Transactions on Computers ER   
[1] D. Comer, Internetworking with TCP/IP, Volume 1: Principles, Protocols, and Architecture. PrenticeHall, Inc., 2006.
[2] A.S. Tanenbaum, Computer Networks, fourth ed. PrenticeHall, Inc., 2003.
[3] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia, “Routing with Guaranteed Delivery in Ad Hoc Wireless Networks,” Wireless Networks, vol. 6, no. 7, pp. 609616, 2001.
[4] B. Karp and H.T. Kung, “GPSR: Greedy Perimeter Stateless Routing for Wireless Networks,” Proc. Sixth ACM MobiCom, pp. 243254, 2000.
[5] F. Kuhn, R. Wattenhofer, Y. Zhang, and A. Zollinger, “Geometric AdHoc Routing: Of Theory and Practice,” Proc. 22nd ACM Symp. Principles of Distributed Computing (PODC), pp. 6372, 2003.
[6] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Asymptotically Optimal Geometric Mobile AdHoc Routing,” Proc. Sixth ACM Discrete Algorithms and Methods for Mobile Computing and Comm. (DIALM), pp. 2433, 2002.
[7] F. Kuhn, R. Wattenhofer, and A. Zollinger, “WorstCase Optimal and AverageCase Efficient Geometric AdHoc Routing,” Proc. Fourth ACM Symp. Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 267278, 2003.
[8] R. Kleinberg, “Geographic Routing Using Hyperbolic Space,” Proc. 26th IEEE INFOCOM '07, pp. 19021909, 2007.
[9] C.H. Papadimitriou and D. Ratajczak, “On a Conjecture Related to Geometric Routing,” Theoretical Computer Sciences, vol. 344, no. 1, pp. 314, 2005.
[10] K. Bezdek, “Sphere Packings Revisited,” European J. Combinatorics, vol. 27, no. 6, pp. 864883, 2006.
[11] E. Kranakis, H. Singh, and J. Urrutia, “Compass Routing on Geometric Networks,” Proc. 11th Canadian Conf. Computational Geometry (CCCG), pp. 5154, 1999.
[12] H. Frey and I. Stojmenović, “On Delivery Guarantees of Face and Combined GreedyFace Routing in Ad Hoc and Sensor Networks,” Proc. 12th Int'l Conf. MobiCom '06, pp. 390401, 2006.
[13] N. Carlsson and D.L. Eager, “NonEuclidean Geographic Routing in Wireless Networks,” Ad Hoc Networks, vol. 5, no. 7, pp. 11731193, 2007.
[14] A. Rao, S. Ratnasamy, C.H. Papadimitriou, S. Shenker, and I. Stoica, “Geographic Routing without Location Information,” Proc. Ninth Int'l Conf. MobiCom '03, pp. 96108, 2003.
[15] R. Dhandapani, “Greedy Drawings of Triangulations,” Proc. 19th ACMSIAM Symp. Discrete Algorithms (SODA), pp. 102111, 2008.
[16] M.B. Chen, C. Gotsman, and C. Wormser, “Distributed Computation of Virtual Coordinates,” Proc. 23rd Symp. Computational Geometry (SoCG '97), pp. 210219, 2007.
[17] K.M. Lillis and S.V. Pemmaraju, “On the Efficiency of a Local Iterative Algorithm to Compute Delaunay Realizations,” Proc. Workshop Experimental Algorithms (WEA), 2008.
[18] S.K. Ghosh and K. Sinha, “On Convex Greedy Embedding Conjecture for 3Connected Planar Graphs,” FCT, M. Kutylowski, W. Charatonik, and M. Gebala, eds., pp. 145156, Springer, 2009.
[19] T. Leighton and A. Moitra, “Some Results on Greedy Embeddings in Metric Spaces,” Proc. 49th IEEE Symp. Foundations of Computer Science (FOCS), 2008.
[20] P. Angelini, F. Frati, and L. Grilli, “An Algorithm to Construct Greedy Drawings of Triangulations,” Proc. 16th Int'l Graph Drawing Conf., pp. 2637, 2008.
[21] R.B. Muhammad, “A Distributed Geometric Routing Algorithm for Ad Hoc Wireless Networks,” Proc. IEEE Conf. Information Technology (ITNG), pp. 961963, 2007.
[22] H. de Fraysseix, J. Pach, and R. Pollack, “How to Draw a Planar Graph on a Grid,” Combinatorics, vol. 10, no. 1, pp. 4151, 1990.
[23] W. Schnyder, “Embedding Planar Graphs on the Grid,” Proc. First ACMSIAM Symp. Discrete Algorithms, pp. 138148, 1990.
[24] M.T. Goodrich and D. Strash, “Succinct Greedy Geometric Routing in the Euclidean Plane,” Proc. 20th Int'l Symp. Algorithms and Computation (ISAAC), pp. 781791, 2009.
[25] P. Maymounkov, “Greedy Embeddings, Trees, and Euclidean vs. Lobachevsky Geometry,” M.I.T., http://pdos.csail.mit.edu/ petar/papers maymounkovgreedyprelim.pdf, 2006.
[26] E.N. Gilbert and E.F. Moore, “VariableLength Binary Encodings,” Bell System Technical J., vol. 38, pp. 933968, 1959.
[27] D.E. Knuth, “Optimum Binary Search Trees,” Acta Informatica, vol. 1, pp. 1425, 1971.
[28] B.A. Sheil, “Median Split Trees: A Fast Lookup Technique for Frequently Occurring Keys,” Comm. ACM, vol. 21, no. 11, pp. 947958, 1978.
[29] D.D. Sleator and R.E. Tarjan, “A Data Structure for Dynamic Trees,” J. Computer and System Sciences, vol. 26, no. 3, pp. 362391, 1983.
[30] B. Schieber and U. Vishkin, “On Finding Lowest Common Ancestors: Simplification and Parallelization,” SIAM J. Computing, vol. 17, no. 6, pp. 12531262, 1988.
[31] S. Alstrup, P.W. Lauridsen, P. Sommerlund, and M. Thorup, “Finding Cores of Limited Length,” Proc. Int'l Workshop Algorithms and Data Structures (WADS '97), pp. 4554, 1997.
[32] D. Eppstein, “Manhattan Orbifolds,” Electronic preprint math.MG/0612109, 2009.
[33] D. Eppstein and M.T. Goodrich, “Succinct Greedy Graph Drawing in the Hyperbolic Plane,” Proc. 16th Int'l Graph Drawing Conf., pp. 1425, 2008.